admin管理员组

文章数量:1794759

【导语】下面是小编帮大家整理的求平均数2(人教版五年级教案设计)(共15篇),希望对大家的学习与工作有所帮助。

篇1:求平均数2(人教版五年级教案设计)

教学目标

1.进一步理解求平均数的意义,掌握较复杂的求平均数的方法.

2.培养学生灵活计算的能力和解决实际问题的能力.

教学重点

求平均数的意义及较复杂的求平均数的方法.

教学难点

较复杂的求平均数的方法.

教学过程

一、复习准备.

口算【演示课件“求平均数”】

①小明有12本书,小军有20本书,小明和小军平均每人有几本书?

②五(3)班做好事28件,五(4)班做好事36件,平均每个班做好事多少件?

③五年级一班分成3组投篮球,第一组投中28个,第二组投中33个,第三组投中23个平均每组投中多少个?

针对第③题提问:

①说出这道题的问题是什么?

②求平均数必须知道什么条件?

③说一说你是怎样计算的?

板书:投中总个数÷组数

二、学习新课【继续演示课件“求平均数”】

(一)出示例1:五年级一班分成3组投篮球,第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个.全班平均每人投中多少个?

学生分组讨论思考题:

1.例1和准备题③比较,题目有什么异同?(从条件和问题两方面考虑.)

2.要求全班平均每人投中多少个,必须先知道什么条件?

板书:投中总个数÷全班总人数.

3.投中总个数和全班总人数知道之后,怎样求全班平均每人投中多少个?

板书:

(1)全班一共投中多少个?

28+33+23=84(个)

(2)全班一共有多少人?

10+11+9=30(人)

(3)全班平均每人投中多少个?

84÷30=2.8(个)

综合:(28+33+23)+(10+11+9)=2.8(个)

答:全班平均每人投中2.8个.

教师提问:对比例1和准备题③你能发现解答方法有什么异同吗?为什么会出现这种不同的情况?

(二)出示例2:下表是五年级二班3个组投中篮球情况统计表.全班平均每人投中多少个?(得数保留一位小数)

各组人数 12 11 10

平均每人投中数 2.5 3 3.2

教师提问:例2和例1比较,有什么异同?(问题一样,但已知条件不同)

要求全班平均每人投中多少个,要知道什么条件?怎样列式?

板书:

(1)全班一共投中多少个?

2.5×12+3×11+3.2×10=95(个)

(2)全班一共有多少人?

__________________________

(3)全班平均每人投中多少个?

__________________________

答:全班平均每人投中________个.

教师:你能列出综合算式吗?

板书:(2.5×12+3×11+3.2×10)÷(12+11+10)

教师强调:求平均数时,有时不能除尽,这时需要根据具体情况取近似值.

三、巩固反馈【继续演示课件“求平均数”】

1.小亮读一本书,前4天平均每天看6.25页,后3天平均每天看8页.小亮这一星期平均每天看多少页?

2.判断正误并说明理由.

①小李加工一批零件,前2时加工28个,后3时加工36个,平均每时加工多少个?

A.(28+36)÷(3+2)( );

B.(28×2+36×3)÷(3+2)( );

C.(28+36)÷2( ).

②一辆汽车从甲地开往乙地,前5时平均每时行60千米,后3时平均每时行56千米,这辆汽车从甲地开往乙地,平均每时行驶多少千米?

A.(60+56)÷(5+3)( );

B.(60+56)÷2( );

C.(60×5+56×3)÷(5+3)( ).

四、课堂总结.

解答求平均数应用题应注意哪些问题?

①明确问题求的是什么平均数;

②总数量÷总份数=平均数

五、布置作业.

1.五年级两个班参加植树活动.一班37人,共植树132棵;二班35人,共植树120棵.五年级平均每班植树多少棵?五年级平均每人植树多少棵?

篇2:求平均数(五年级)(人教版五年级教案设计)

教学目标

(一)进一步理解求平均数的意义,掌握较复杂的求平均数的方法。

(二)通过题目设计,对学生进行思想品德教育。

(三)培养学生灵活计算的能力和解决实际问题的能力。

教学重点和难点

求平均数的意义及较复杂的求平均数的方法。

较复杂的求平均数的方法。

教学用具

教具:电脑软件、投影片。

学具:判断卡。

教学过程设计

(一)复习准备

1.口算。

①小明有12本书,小军有20本书,小明和小军平均每人有几本书?

②五(3)班做好事28件,五(4)班做好事36件,平均每个班做好事多少件?③五年级一班分成3组投篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每组投中多少个?

由学生自己解答(列式计算)针对第③题提问:

①说出这道题的问题是什么?

②求平均数必须知道什么条件?

③说一说你是怎样计算的?

板书:投中总个数÷组数。

(二)学习新课

1.出示例 1:

五年级一班分成3组投篮球,第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?

读题后,学生分组讨论思考题。(投影片)

①例1和准备题③比较,题目有什么异同?(从条件和问题两方面考虑。)②要求全班平均每人投中多少个,必须先知道什么条件?

在学生回答基础上,板书:投中总个数÷全班总人数。

教师:投中总个数和全班总人数题目中给了吗?怎么办?

②投中总个数和全班总人数知道之后,怎样求全班平均每人投中多少个?

尝试自己列式,然后讨论订正。

板书:

(1)全班一共投中多少个?

28+33+23=84(个)

(2)全班一共有多少人?

10+11+9=30(人)

(3)全班平均每人投中多少个?

84÷30=2.8(个)

教师:综合算式怎样列?(学生试列式,再讨论订正。)

板书:(28+33+23)÷(10+11+9)=2.8(个)

答:全班平均每人投中2.8个。

教师:对比例1和准备题③你能发现解答方法有什么异同吗?为什么会出现这种不同的情况?

2.出示例2:(投影片)

下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数)

教师:例2和例1比较,有什么异同?

明确:例1和例2的问题一样,但已知条件不同。

教师:要求全班平均每人投中多少个,要知道什么条件?(学生试做,然后说出自己的列式和思路,充分讨论,如果有不同意见互相交换,最后弄清怎样是对的。)

板书:

(1)全班一共投中多少个?

2.5×12+3×11+3.2×10=95(个)

由学生完成。

(2)全班一共有多少人?

________________________

(3)全班平均每人投中多少个?

________________________

答:全班平均每人投中________个。

教师:你能列出综合算式吗?

板书:(2.5×12+3×11+3.2×10)÷(12+11+10)。

讨论:对比例2和例1有什么不同?解答时应该注意什么问题?

教师:求平均数时,有时不能除尽,这时需要根据具体情况取近似值。

(三)巩固反馈

1.做一做:

小亮读一本书,前4天平均每天看6.25页,后3天平均每天看8页。小亮这一星期平均每天看多少页?(先说思路,再列式计算。)

2.判断正误并说明理由。

①小李加工一批零件,前2时加工28个,后3时加工36个,平均每时加工多少个?

[  ]

A.(28+36)÷(3+2);

B.(28 × 2+36 × 3)÷(3+2);

C.(28+36)÷2。

②一辆汽车从甲地开往乙地,前5时平均每时行60千米,后3时平均每时行56千米,这辆汽车从甲地开往乙地,平均每时行驶多少千米?

[  ]

A.(60+56)÷(5+3);

B.(60+56)÷2;

C.(60×5+56×3)÷(5+3)。

(四)课堂总结(学生总结)

教师:解答求平均数应用题应注意哪些问题?

①明确问题求的是什么平均数;

②总数量÷总份数=平均数。

(五)布置作业  课本P15:1,2,3,4,5。

课堂教学设计说明

本节课是在较简单的求平均数应用题的基础上进行的。重点是让学生理解并巩固平均数的意义以及求平均数应用题的解题思路和方法,其中加权算术平均数的计算方法是难点。通过准备题与例1的对比突出重点,学生掌握求平均数的方法,同时培养学生分析、比较的能力。让学生充分讨论、尝试例2,培养学生独立解答问题的能力,从而突破了难点。

本节新课教学分为三部分。

第一部分,教学例1,加深对平均数应用题的解题方法的理解,共分3层。

第一层:由准备题与例1对比,找出异同点;

第二层:由问题出发找出解决问题的方法;

第三层:列出分步和综合算式。

第二部分:教学例2,强调根据题意确定算法,可分3层。

第一层:出示例2,审题找出与例1的异同点;

第二层:分组讨论解题方法;

第三层:列出分步、综合算式。

第三部分:对比例1、例2,找出异同点,从而加深对平均数应用题解题方法的理解。

板书设计(略)

篇3:求平均数(2)(人教版四年级教案设计)

教学目标

1.使学生理解“平均数”的含义,掌握简单求平均数的方法.能根据简单的统计表求平均数.

2.培养学生分析、综合的能力和操作能力.

3.使学生感悟到数学知识与生活联系紧密,增强对数学的兴趣.

教学重点

明确“求平均数”与“平均分”的区别,掌握求“平均数”的方法.

教学难点

理解平均数的概念,明确“求平均数”与“平均分”的区别.

教学步骤

一、铺垫孕伏.

1.小华4天读完60页书,平均每天读几页?

2.一个上下同样粗的杯子里装有16厘米深的水,把这些水平均倒在4个同样粗细的杯子里,每个杯子里的水深是多少厘米?

3.小明和小刚的体重和是160斤,平均体重多少斤?

师:上述1、2两题都是把一个数平均分成几份,实际每一份都一样多,而第3题是把两个数的和平均分成两份,每份不一定是实际数.所以,“求几个数的平均数”与“把一个数平均分成几份”,是有区别的.

二、探究新知.

1.引入新课.

以前,我们学习过“把一个数平均分成几份,求每份是多少”的应用题,也就是“平均分”的问题.

今天我们共同研究一下“求平均数”问题.(板书课题:求平均数)

2.教学例2.

(1)出示例2.用4个同样的杯子装水,水面高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

(2)组织讨论:你怎样理解“水面的平均高度”?

(3)学生汇报讨论结果,教师进一步明确:所谓“平均高度”,并不是每个杯子水面的实际高度,而是在总水量不变的情况下,水面高度同样的高度值.

(4)学生操作.

请同学们拿出准备的积木,用每块积木的高度代表1厘米,先用积木按例题的高度要求叠放四堆来表示4杯水的高度,再动脑动手操作一下,使这四“杯”水的水面高度相等.

(5)学生汇报操作结果,一般出现两种方法.

第一种:数出共有多少个积木,或把积木全部叠放在一起,共16厘米,再用

16÷4=4厘米,得出每“杯”水水面的平均高度是4厘米.

第二种:直接移多补少.从6厘米中取2厘米放入2厘米杯中,从5厘米杯中取1厘米放入3厘米杯中,就可直接得到4杯水面高度相同的水,水面高度都是4厘米.这说明原来4杯水水面的平均高度是4厘米.

(6)师:通过同学们的操作,我们得到了这4杯水水面的平均高度是4厘米.但这里有一个问题,操作时,我们使水杯的水面实际高度发生了变化,平均高度得到了,而原来4杯水水面高度却发生了变化.而现实生活中,很多求平均数的情况是不允许改变原值的.例如:高个身高180厘米,矮个身高140厘米,两人的平均身高是160厘米.并不是把高个的身体削下一部分来,接在矮个身体上,使两人身高相等.由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的.如果我们不通过操作,直接通过计算,能不能求出这4杯水水面的平均高度呢?怎样计算方便呢?

(7)引导学生列式计算.

(6+3+5+2)÷4

=16÷4

=4(厘米)

答:这4个杯子水面的平均高度是4厘米.

小结:通过上题的计算,进一步明确:应先相加求出高度总和,再用高度和除以杯子数,得到平均高度.

(8)看例2与复习题,两题的结果都是4厘米,所表示的意义相同吗?

明确:复习题中,4厘米是平均分的结果,即每个杯子水面的实际高度就是4厘米;例2是求的平均数,4厘米表示的是各杯子水面高度的平均值,而每个杯中水面的实际高度并不一定是4厘米,它们的实际高度并不要求发生变化.

(9)反馈练习.

小强投掷三次垒球,每次的成绩分别是:28米、29米、27米.求平均成绩.

3.教学例3.

(1)出示例3:四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表(单位:厘米)

篇4:求平均数(四年级)(人教版四年级教案设计)

教学目标

(一)使学生理解平均数的概念.

(二)掌握简单的求平均数的方法.

(三)培养学生分析、概括的能力.

教学重点和难点

平均数是个比较抽象的概念,它和平均分的意义不完全一样,平均数实际上每一份不一定一样多,而平均分是指实际上每份都一样多.因此理解平均数的概念是难点,让学生理解并掌握求平均数的方法是教学重点.

教学过程设计

(一)复习准备

口答:

1.小华4天读完60页书,平均每天读几页?

2.五一班有42人,平均分成6个组,每个组有多少人?

3.小明期中测验语文和数学两科成绩共得180分,平均每科成绩多少分?

师:上述1,2两题都是把一个数平均分成几份,求1份是多少.实际上它们每一份都一样多,而第3题是把两个数的和平均分成两份,每一份是它们的平均数,而不是原来每份实际的数,所以“求几个数的平均数”与“把一个数平均分成几份,求1份是多少”,既有联系又有区别.

(二)学习新课

1.新课引入.

在日常生活、工农业生产中,经常用到平均数的概念,如平均速度、平均成绩、平均产量等.怎样理解平均数的概念,如何求出几个数的平均数呢?这就是我们今天要研究的课题.(板书:平均数)

2.出示例2.

用4个同样的杯子装水,水面的高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

3.分析,教师演示,学生观察、思考.

教师拿出盛水的4个同样的杯子,标明刻度.

师:这4个杯子水面高度相等吗?

生:这4个杯子水面高度不相等.

师:求4个杯子水面的平均高度是什么意思?

生:平均高度就是4个杯子里的水面一样高.

师:怎样才能找出4杯水的平均高度呢?

出示挂图(即课本中的下图)放在4个杯子后面,指出红线标明的地方(4厘米)就是平均高度.

教师演示,把水多的杯子倒一些到水少的杯子,使4杯水同样多,得到平均高度.

师:这平均高度是每杯水的实际高度吗?它是怎样得到的呢?

通过演示使学生明确,它不是每杯水的实际高度,而是把4个杯子里的水平均分的结果.

师:如果我们不倒水,能算出这个平均高度吗?

小组讨论.从而明确:要求4个杯子水的平均高度,要先把4个杯子的水面高度加起来,再除以4,相当于把4个杯子里的水合在一起,再平均倒在4个杯子里,看每个杯子水面的高度是多少.用算式表示就是(6+3+5+2)÷4.

教师板书:(6+3+5+2)÷4

=16÷4

=4(厘米)

答:4个杯子水面平均高度是4厘米.

说说括号里求什么?为什么除以4?得到的结果表示什么.

要强调4厘米是平均数.

4.做29页上的“做一做”中的第1,2,3题.

订正时让学生讲出思考过程.

5.总结规律.

师:从刚才做的几道题中,你能说一说求平均数的一般方法吗?

通过学生的回答概括为:求几个数的平均数,先要求出这几个数的总数,然后再找出要把它平均分成的份数,最后用总数除以总份数就可以得到平均数.

6.出示例3.学生默读例3,理解题意,明确条件和问题.

师:如何比较哪一组平均身高高一些?怎样计算出高多少?

启发学生想:如一个一个地比,非常麻烦,而且不容易比清楚.先算出各组的平均身高,就容易比较了.

让学生运用从例2中学到的方法,自己求出两组各自的平均身高,再求出哪一个组的平均身高高一些,高多少.

师:如果不求平均身高,直接用各组所有人数的和进行比较行不行?为什么?

使学生明确,由于两组人数和每人身高不一样,不能直接比较,只能用平均身高进行比较.

(三)巩固反馈

1.选择正确列式,并说明理由.

一辆汽车第一天行53千米,第二天行58千米,第三天上午行30千米,下午行27千米.平均每天行多少千米?

A.(53+58+30+27)÷3

B.(53+58+30+27)÷4

2.光明小学五年级3个班为灾区人民捐款750元,六年级4个班为灾区人民捐款1210元.平均每个年级捐款多少元?这两个年级平均每班捐款多少元?

小组讨论后得出:

平均每个年级捐款多少元?

(750+1210)÷2

两个年级平均每班捐款多少元?

(750+1210)÷(3+4)

强调是把哪几个数平均分、分成多少份,要认真审题,找出所需要的总数及总份数,再求出它们的平均数.

(四)作业

练习七第1,2题.

课堂教学设计说明

平均数是统计中的一个重要概念.小学里所讲的平均数一般是指算术平均数,也就是一组数量的和除以这组数量的个数所得的商.因为这个平均数不是实际的数,与过去学的平均分的意义不完全一样,因而平均数的概念比较抽象.在日常工作、生活中要经常用到如平均产量、平均速度等等,因此首先要建立平均数的概念,再分析求平均数的方法.本节课设计既要体现学生的主体作用,又重视学习方法的指导.

首先通过简单的口答题,初步认识平均数的意义,分清平均数与平均分的联系与区别.为学新课做好铺垫.

新课分为四个层次.

第一个层次学习例2.求4个杯子水面的平均高度.通过教师的演示,提问,学生在观察、讨论的基础上,理解平均高度的意义,建立平均数的概念.

第二个层次是指导列式计算.在实际中,求几个数的平均数,都不可能像杯子倒水那样操作,因此引导学生要通过计算来解决.

第三个层次,让学生做书上的“做一做”几个题,启发学生总结出求几个数的平均数的一般算法.

第四个层次,通过例3让学生运用学过的方法类推、自己计算,从而加深对平均数的理解,熟练地掌握计算方法.

练习的设计有所提高和变化,要让学生分清把哪几个数平均分,分成多少份,为以后学习复杂的求平均数问题打下基础.

板书设计

求平均数

例2  用同样的4个杯子装水,水面的高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

(6+3+5+2)÷4

=16÷4

=4(厘米)

答:这4个杯子水面的平均高度是4厘米.

例3  四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表.(单位是厘米)

eq x(统计表)

(1)第一组平均身高是多少?

(136+142+140+135+137+144)÷6

=834÷6

=139(厘米)

(2)第二组平均身高是多少?

(132+141+133+138+145+135+142)÷7

=966÷7

=138(厘米)

(3)第一组平均身高比第二组高多少?

139-138=1(厘米)

答:第一小组平均身高高一些,高1厘米.

篇5:最小公倍数2(人教版五年级教案设计)

教学目标

1.掌握公倍数、最小公倍数两个概念.

2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.

教学重点

建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.

教学难点

理解求两个数最小公倍数的算理.

教学步骤

一、铺垫孕伏.

1.导入:这节课我们开始学习有关最小公倍数的知识.

(板书:最小公倍数)

2.复习倍数的概念.

二、探究新知.

教学例1【演示课件“最小公倍数”】

例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?

4的倍数有:4、8、12、16、20、24、28、32、36……

6的倍数有:6、12、18、24、30、36……

4和6的公倍数有:12、24、36……

其中最小的一个是12.

1、学生分组讨论总结公倍数、最小公倍数的意义.

2、用集合图表示4和6的公倍数.

3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?

明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.

4、反馈练习.

把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几.

明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.

(二)教学例2【演示课件“最小公倍数”】

引入:我们用分解质因数的方法求两个数的最小公倍数.

例2:求18和30的最小公倍数.

1、用短除式分别把18和30分解质因数.

板书: 18=2×3×3

30=2×3×5

教师提问:18的倍数必须包含哪些质因数?

(18的倍数包含18的所有质因数)

30的倍数必须包含哪些质因数?

(30的倍数包含30的所有质因数)

18和30的公倍数必须包含哪些质因数?

(既要包含18的所有质因数,又要包含30的所有质因数)

2、观察集合图:18和30的最小公倍数应包含哪些质因数?

教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.

3、小组讨论:如果少一个或多一个质因数行不行?

教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数.

板书:

18和30的最小公倍数是2×3×3×5=90

4、反馈练习.

(1)先把下面两个数分解质因数,再求出它们的最小公倍数.

30=( )×( )×( )

42=( )×( )×( )

30和42的最小公倍数是( )×( )×( )×( )=( )

(2)A=2×2 B=2×2×3

A和B的最小公倍数是( )×( )×( )=( )

(3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?

可能错在哪里?

5、求最小公倍数的一般书写格式.

①引导学生把两个短除式合并成一个.

板书:

②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.

③反馈练习:求30和45的最小公倍数.

④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.

⑤反馈练习:求下面每组数的最小公倍数

6和8 24和20 28和21 16和72

篇6:五年级数学求平均数教案

五年级数学求平均数教案

教学目标:

1.知道平均数的含义和求法。

2.加强学生对平均数在统计学上意义的理解。

3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。

教师重点和难点:理解平均数的含义,掌握求平均数的方法。

教具/学具准备:多媒体、长方形。

一、创设情境、激趣导入

1.谈话引入:(出示幻灯教师家的书架)

师:这是老师家的书架,咱们一起来看看。现在我的书架上上层有8本书,下层有4本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。你有什么办法?

2.感知

(1)学生思考,想象移的过程。

生:把上层书架上的8本书 ,拿2本放在下层书架上,现在每层书架上的书就一样多了。

(2)教师操作并问:现在每层都有几本书了?(6本)

(3)师:像这样把多的移给少的,解决问题的'方法,我们给它起个名字叫:移多补少。

(4)师:你还有什么方法?

生:把上层书架上的书和下层书架上的书先合起来,再平均放在两层书架上,这样每层书架上的书就一样多了。

师:像这种把几个不同的数先合并起来,再平均分成这样的几份的到相同的数,解决问题的方法我们也给它起个名字叫:先合后分。

(5)师:现在每层书架上的书一样多了吗?

生:一样多了。

师:都是几本?(6本)

师:它是我们通过什么方法得到的数?(或者:谁来说一说我们可以通过什么方法来得到这个数?)

生:用的是移多补少和先合后分的方法。

师:像这样得到的数,它也有自己的名字―平均数。

师:所以6就是8和4的平均数。谁再来说说6是谁和谁的平均数?(生说)

(6)师:今天,我们就来认识一下“平均数”这个新朋友,好吗? (板书:平均数)

二、合作探究,深化理解

1、师:老师又新增添了一层书架,第三层书架上有几本书了?

生:第三层书架上有3本书了.

师:用我们刚才解决问题的方法,你能求出这三层书架上书的本数的平均数吗?

师:请拿出学具,来摆一摆,注意摆时要一一对应。

摆完把你的想法讲给你的同伴听一听。(学生活动,教师巡视。)

师:谁来说一说,你的方法。

学生汇报:

生:从8本书里拿出1个放在第二层4本书里,再从第一层拿出2本书放在第三层书里,这样他们每层就一样多了。

师:现在每层有几本书了?

生:现在每层有5本书了。

师:5就是8、4、3的什么数?

生:5就是8、4、3的平均数。

师:还有其他方法吗?

生:先把三层书合起来,在平均分成3层。

师:你能有算式表示表示出来吗?

生:(8+4+3)÷3=5(本)(师板书)

师:8+4+3表示什么?为什么要除以3?5表示什么?

(1) 找2-3人来汇报。

(2) 把这个算是各部分表示什么?同伴之间互相说一说。

2、师:下面我们来解决一个生活中的小问题。(出示统计图)

(1)师:仔细观察这幅统计图,你获得了那些数学信息?

生:小红收集了47个矿泉水瓶。小兰收集了33个矿泉水瓶。小亮收集了25个矿泉水瓶。小红收集了35个矿泉水瓶。

师:根据数学信息,你能提出一个跟我们今天学习有关的数学问题吗?

生:这一小队平均每人收集了多少个矿泉水瓶?

师:怎样求出这一小队平均每人收集了多少个矿泉水瓶?

师:你先独立思考一下,把自己的想法和同伴交流交流,再把自己的想法用算式表示出来。

学生活动,教师巡视。

组织汇报:

生:(47+33+25+35)÷4

=(80+60)÷4

=140÷4

=35(个)

答:这一小队平均每人收集了35个矿泉水瓶。

师:观察这个算式,哪部分体现了合?哪部分体现了分?哪个数是平均数?

生:47+33+25+35体现了合, ÷4体现了分, 35是平均数。

师:35是哪些数的平均数?

生:35是47、33、25、35平均数。

师:有用移多补少的方法的吗?

师:你们怎么不用这种方法呢?

生:数太大不好操作。

师:好,老师把这种方法放到了上了,我们一起来看一下吧。(放,学生体验一本一本的移比较麻烦)。

师小结:看起来,真像同学们说的一样,用“移多补少”的方法解决这个问题真是不方便。我们以后在遇到问题时,一定要根据不同问题选择合适的方法来解答。

(2)师:老师把平均数也放到了统计图中,请你用这个平均数与这四位同学实际的收集的矿泉水瓶个数比一比,你发现了什么?(看情况,让学生小组交流)

生:小红收集的个数比平均数多;小兰和小亮收集的个数比平均数少;小明收集的个数与平均数同样多。

师:它是每个人实际收集到的矿泉水瓶吗?

生:不是。

师:它只是反应了这组数据的总体情况。

三、应用知识,解决问题

师:看来同学们已经对平均数有了较深的认识,那我要出几道题考考大家。

1、判断并说明理由

学校篮球队队员的平均身高是160厘米。

(1)李强是学校篮球队队员,他身高155厘米,可能吗?(生判断。)说说你的理由。

师:说得好!为了使同学们对这一问题有更深刻的了解,我还给大家带来了一道题。

(2)学校篮球队可能有身高超过160厘米的队员吗?

师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数,那么。。。。

生:那就一定有人身高不到平均数。

师:没错。看来,平均数只反映一组数据的总体水平,并不代表其中的每一个数据。好了,探讨完身高问题,我们再来看看小马过河的问题。

2、有一匹小马要过河,可是河上没有桥,河边有个告示牌:平均水深120厘米,请注意安全!小马想:我的身高是140厘米,比平均水深要高,一定能安全过河。

师:同学们,你们说小马能安全过河吗?和你的同伴讨论讨论。

学生们判断并说明理由。

师:看来小马能否安全过河是不确定的,小马听了你们的分析,一定会谨慎从事的,谢谢同学们。

3、在一次采摘活动中,小明摘了52个苹果,小刚摘了56个苹果,小红和小兰共摘了84个苹果,他们平均每人摘了多少个苹果?(列 综合算式)

学生独立解决,集体订正。

四、小结:通过今天的学习,你有哪些新的收获?

五、师总结:同学们,刚才我们利用平均数解决了这么多的问题,走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。

篇7:小学四年级数学求平均数教案设计

小学四年级数学求平均数教案设计

教学目标

1.使学生理解平均数的含义,掌握简单求平均数的方法.能根据简单的统计表求平均数.

2.培养学生分析、综合的能力和操作能力.

3.使学生感悟到数学知识与生活联系紧密,增强对数学的兴趣.

教学重点

明确求平均数与平均分的区别,掌握求平均数的方法.

教学难点

理解平均数的概念,明确求平均数与平均分的区别.

教学步骤

一、铺垫孕伏.

1.小华4天读完60页书,平均每天读几页?

2.一个上下同样粗的杯子里装有16厘米深的水,把这些水平均倒在4个同样粗细的杯子里,每个杯子里的水深是多少厘米?

3.小明和小刚的体重和是160斤,平均体重多少斤?

师:上述1、2两题都是把一个数平均分成几份,实际每一份都一样多,而第3题是把两个数的和平均分成两份,每份不一定是实际数.所以,求几个数的平均数与把一个数平均分成几份,是有区别的.

二、探究新知.

1.引入新课.

以前,我们学习过把一个数平均分成几份,求每份是多少的应用题,也就是平均分的问题.

今天我们共同研究一下求平均数问题.(板书课题:求平均数)

2.教学例2.

(1)出示例2.用4个同样的杯子装水,水面高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

(2)组织讨论:你怎样理解水面的平均高度?

(3)学生汇报讨论结果,教师进一步明确:所谓平均高度,并不是每个杯子水面的实际高度,而是在总水量不变的情况下,水面高度同样的高度值.

(4)学生操作.

请同学们拿出准备的积木,用每块积木的高度代表1厘米,先用积木按例题的高度要求叠放四堆来表示4杯水的高度,再动脑动手操作一下,使这四杯水的水面高度相等.

(5)学生汇报操作结果,一般出现两种方法.

第一种:数出共有多少个积木,或把积木全部叠放在一起,共16厘米,再用

164=4厘米,得出每杯水水面的平均高度是4厘米.

第二种:直接移多补少.从6厘米中取2厘米放入2厘米杯中,从5厘米杯中取1厘米放入3厘米杯中,就可直接得到4杯水面高度相同的水,水面高度都是4厘米.这说明原来4杯水水面的.平均高度是4厘米.

(6)师:通过同学们的操作,我们得到了这4杯水水面的平均高度是4厘米.但这里有一个问题,操作时,我们使水杯的水面实际高度发生了变化,平均高度得到了,而原来4杯水水面高度却发生了变化.而现实生活中,很多求平均数的情况是不允许改变原值的.例如:高个身高180厘米,矮个身高140厘米,两人的平均身高是160厘米.并不是把高个的身体削下一部分来,接在矮个身体上,使两人身高相等.由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的.如果我们不通过操作,直接通过计算,能不能求出这4杯水水面的平均高度呢?怎样计算方便呢?

(7)引导学生列式计算.

(6+3+5+2)4

=164

=4(厘米)

答:这4个杯子水面的平均高度是4厘米.

小结:通过上题的计算,进一步明确:应先相加求出高度总和,再用高度和除以杯子数,得到平均高度.

(8)看例2与复习题,两题的结果都是4厘米,所表示的意义相同吗?

明确:复习题中,4厘米是平均分的结果,即每个杯子水面的实际高度就是4厘米;例2是求的平均数,4厘米表示的是各杯子水面高度的平均值,而每个杯中水面的实际高度并不一定是4厘米,它们的实际高度并不要求发生变化.

(9)反馈练习.

小强投掷三次垒球,每次的成绩分别是:28米、29米、27米.求平均成绩.

3.教学例3.

(1)出示例3:四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表(单位:厘米)

(2)读题,组织学生讨论:两组人数不同,每人的身高也不尽相同,想要直接比较出哪一组的身高较高,怎么做比较好呢?

(3)根据讨论结果,明确先求出每组的平均身高,再进行比较.

(4)列式计算.

第一小组的平均身高是多少?

(136+142+140+135+137+144)6

=8346

=139(厘米)

第二小组的平均身高是多少?

(132+141+133+138+145+135+142)7

=9667

=138(厘米)

第一小组的平均身高比第二小组的高多少?

139-138=1(厘米)

答:第一小组平均身高高一些,高1厘米.

(5)反馈练习.

一个小组有7个同学,他们的体重分别是:39千克、36千克、38千克、37千克、35千克、40千克、34千克.这个小组平均体重是多少千克?

三、课堂小结.

通过小结,进一步区分平均分与平均数两个概念的不同含义,巩固求平均数的方法.

四、布置作业.

回家后量出你家中每个人的身高,记录下来,并求出全家人的平均身高.

篇8:小数乘法2(人教版五年级教案设计)

教学目标

1.进一步巩固小数乘法的意义和计算法则,并会解答求一个数的若干倍的应用题.

2.提高学生计算能力和估算能力.

3.培养学生认真计算、自觉检验的好习惯.

教学重点

正确、熟练地计算较复杂的小数乘法.

教学难点

根据小数乘法的意义正确判断积与被乘数的大小关系.

教学过程

一、检查复习

(一)口算

0.9×6       7×0.08      1.87×0        0.3×0.6

0.24×2      1.4×0.3      1.6×5        4×0.25

60×0.5      7.8×1

(二)说出下面各算式表示的意义

2.4×0.8      1.36×4       2.58×0.2

二、指导探索

(一)教学例3  0.056×0.15

1.学生独立计算,指名板演.

2.指名说一说计算过程.

教师提问:乘得的积的小数位数不够时,该怎么办?

3.指导学生验算方法

教师提问:怎样检验小数乘法计算是否正确?

(运算乘法交换律检验;再重新算一遍;检查尾数和积的小数位数等)

(二)教学例4

一个奶牛场八月份产奶18.5吨.九月份的产量是八月份的2.4倍.九月份产奶多少吨?

1.独立解答.

2.教师提问:

(1)你是根据什么列式的?(一倍数×倍数=几倍数)

(2)18.5×2.4所表示的意义是什么?(表示求18.5的2.4倍是多少)

3.比较:例3和例4的两个算式,积与被乘数比较,谁大?谁小?

4.练习:不计算,说明下面各算式中积与被乘数的关系.

10.8×0.9        2.4×1.8         50×0.36           0.48×0.75

讨论:在什么情况下,积小于第一个因数?

在什么情况下,积等于第一个因数?

在什么情况下,积大于第一个因数?

5.小结:当第二个因数比1小时,积比第一个因数(零除外)小;

当第二个因数等于1时,积等于第一个因数(零除外);

当第二个因数比1大时,积比第一个因数(零除外)大;

6.练习:不计算,判断下面各题的结果是否正确.

0.72×0.15=1.08         0.36×1.8=0.648

三、质疑小结

(一)今天你都有什么收获?

(二)对于今天的学习还有什么问题?

四、反馈调节

(一)计算

0.37×2.9      0.56×0.08      0.072×0.15

0.18×8.45     4.5×0.002      3.7×0.016

(二)判断对错.

1.0.6时等于6分.(    )

2.一个数的1.02倍比原来的数要大.(    )

3.两个因数的小数位数的和是4,积的小数位数也一定是4.(    )

(三)工地有水泥24.5吨,沙子的重量是水泥的2.5倍,石子的重量是沙子的4倍,石子有多少吨?

五、课后作业

(一)计算

82×0.9      3.4×1.26      0.039+1.75

2.07×53     20.14-6.87    10-5.29

篇9:最大公约数2(人教版五年级教案设计)

教学目标

1.使学生掌握公约数、最大公约数、互质数的概念.

2.使学生初步掌握求两个数的最大公约数的一般方法.

教学重点

理解公约数、最大公约数、互质数的概念.

教学难点

掌握求两个数的最大公约数的一般方法.

教学步骤

一、铺垫孕伏.

1.说出什么是约数、质因数、分解质因数.

2.求18、20、27的约数

3.把18、20、27分解质因数

二、探究新知.

教师引入:我们已经会求一个数的约数了,这节课我们学习怎样求两个数公有的约数.

(一)教学例1【演示课件 “最大公约数”】

8和12各有哪些约数,它们公有的约数有哪几个?最大的公有的约数是多少?

板书:8的全部约数:1、2、4、8

12的全部约数:1、2、3、4、6、12

学生交流:发现了什么?

学生汇报:8和12公有的约数是:1、2、4

最大的公有的约数是:4.(教师板书)

1.总结概念:8和12公有的约数,叫做8和12的公约数.

1、2、4是8和12的公约数.公约数中最大的一个叫做最大公约数,4是8和12的最大公约数.

2.阅读教材,理解公约数、最大公约数的意义.

3.反馈练习:把15和18的约数、公约数分别填在下面的圈里再找出它们的最大公约数.

(二)教学互质数【演示课件“互质数”】

1.5和7的公约数和最大公约数各是多少?7和9呢?

5的约数:1、57的约数:1、7

7的约数:1、79的约数:1、3、9

5和7的公约数:1 7和9的公约数:1

5和7的最大公约数:1 7和9的最大公约数:1

教师提问:有什么共同点?(公约数和最大公约数都是1)

教师点明:公约数只有1的两个数,叫做互质数.

2.学生讨论:8和9是不是互质数,为什么?

强调:判断两个数是不是互质数,只要看这两个数的公约数是不是只有1.

3.分析:质数和互质数有什么不同?

(意义不同,质数是对一个数说的,互质数是对两个数的关系说的.)

4.反馈练习:学生举例说明互质的数.

(三)教学例2.

求18和30的最大公约数.

1.用短除法把18和30分解质因数.

2.教师提问:根据结果能否知道18和30的约数各有哪些?怎么想的?

明确:根据分解质因数的方法可以求一个数的约数.

3.师生归纳:18和30的约数,要能整除18,又能整除30,就必须包含18和30公有的质因数.最大公约数是公约数中最大的,它就必须包含18和30全部公有的质因数2和3.2×3=6,所以18和30的最大公约数是6.

4.教学求最大公约数的一般书写格式.

启发:为了简便能不能边分解质因数边找公有的质因数?

(把两个短除式合并)

18和30的最大公约数是2×3=6

5.反馈练习:求12和20的最大公约数.

6.小结求两个数的最大公约数的方法.

①学生讨论.

②师生归纳:求两个数的最大公约数,一般先用这两个数公有的质因数去除,一直除到所得的商是互质数为止,然后把所有的除数乘起来.

③教师说明:做短除法时,除数通常是这两个数公有的质因数,并从最小的开始除起;也可以用一个合数去除,只要能够整除这两个数就行.

④反馈练习:求36和54的最大公约数.

三、全课小结.

今天这节课我们主要研究了用什么方法求两个数的最大公约数及相应概念,(板书:最大公约数)它是为以后学习约分做准备的,希望同学们知道知识间是有必然联系的.

四、随堂练习.【演示课件“练习”】

1.填空.

(1)(     )叫做这几个数的公约数,其中(      )叫做这几个数的最大公约数.

篇10:真分数和假分数2(人教版五年级教案设计)

教学目标

1.认识真分数和假分数,掌握它们的特征.

2.学会把分子是分母倍数的分数化成整数.

教学重点

理解真分数、假分数的概念和特征.

教学难点

理解假分数的两种实际意义.

教学步骤

一、铺垫孕伏.

1.  表示的意义是什么?

2.说出  的分数单位及有几个这样的分数单位.

二、探究新知.

我们理解了分数的意义,知道了分数也有大小之分,今天我们继续学习有关分数的知识.

(板书:真分数和假分数)

(一)教学例1:用分数表示每个图形的阴影部分.

1.学生分组讨论:这三个分数有什么特点?

(板书:这三个分数的分子比分母小,这三个分数比“1”小)

2.教师明确:我们把这样的分数就叫做真分数.

3.交流总结:分子比分母小的分数叫真分数,真分数小于1.

4.学生举例:说出几个真分数.

(二)教学例2:用分数表示每个图形的阴影部分.

1.教师提问:这三个数也是分数,观察这些分数的分子与分母你发现了什么?

(板书:分子比分母大或分子和分母相等)

教师明确:分子比分母大或分子和分母相等的分数叫假分数,假分数等于1或大于1.

2.学生举例:说出几个假分数.

(三)反馈练习.

1.下面的分数哪些是真分数,哪些是假分数?

2.归纳总结:分数可分为哪两类?是根据什么划分的?

(四)教学例3.

1.导语:有些假分数的分子恰好是分母的倍数,请同学们从例2的三个分数中找出分子是分母倍数的假分数.

2.出示例3:把  化成整数.

(1)根据分数的意义,  是3个  ,正好是一个圆,所以  ;

根据分数与除法的关系,  =3÷3=1,所以  化成整数是1.

(2)根据分数的意义,  是8个  ,正好是两个圆,所以  =2;

根据分数与除法的关系,  =8÷4=2,所以  =2

3、练习:把下面的假分数化成整数并说说是怎样化的.

三、课堂小结.

通过这节课的学习你懂得了什么?

四、随堂练习.

1.分数可分为哪几类?是怎样划分的?

2.读下面的分数,判断哪些是真分数,哪些是假分数.

3.用真分数或假分数表示图中阴影部分.

4.指出下表中哪些是真分数,哪些是假分数.再指出哪些假分数小于1,哪些假分数大于1.

思考:分母是2、3、4、5的真分数分别有几个?真分数的个数与它的分母有什

么关系?分母是6的真分数有几个?分母是10的呢?

五、布置作业.

把下面的假分数化成真分数.

六、板书设计.

真分数和假分数

例1.观察下面每个图形所表示的分数,比较每个分数中分子和分母的大小.

分子比分母小的分数叫做真分数.真分数小于1. 例2.观察下面每组图形所表示的分数,比较每个分数中分子和分母的大小.

分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于1或者等于1. 例3.把  化成整数

篇11:质数和合数2(人教版五年级教案设计)

课题:质数和合数

教学目标

1.使学生理解质数、合数的概念.

2.熟记20以内的质数.

教学重点

1.理解掌握质数、合数的概念.

2.初步学会准确判断一个数是质数还是合数.

教学难点

区分奇数、质数、偶数、合数.

教学步骤

一、铺垫孕伏.

例1.写出下面各数的所有约数:

1的约数: 2的约数: 3的约数: 4的约数:

5的约数: 6的约数: 7的约数: 8的约数:

9的约数: 10的约数: 11的约数; 12的约数:

二、探究新知.

(一)引导学生归纳.

1.按这些约数个数的多少,可以分为哪几种情况?

2.分组讨论后汇报.

3.引导学生说明:

有一个约数的.(板书:有一个约数的)

有两个约数的.(板书:有两个约数的)

有三个约数的,有四个约数的,有六个约数的.

教师提示:像有三个、四个、六个甚至更多的约数,我们把它们归纳为一种情况,用一句话概括为有两个以上约数的.(板书:有两个以上约数的)

(二)按约数个数的多少,把自然数分成三种情况.

1.分组再讨论.

2.汇报讨论结果.

3.引导学生说出:1的约数是:1(板书:1的约数:1)

有两个约数,它们分别是:

板书:2的约数:1、2

3的约数:1、3

5的约数:1、5

7的约数:1、7

11的约数:1、11

有两个以上的约数,它们分别是:

板书:4的约数:1、2、4

6的约数:1、2、3、6

8的约数:1、2、4、8

9的约数:1、3、9

10的约数:1、2、5、10

12的约数:1、2、3、4、6、12

(三)观察比较发现特点.

1.观察2、3、5、7、11的约数,你发现了什么?

(板书:只有1和它本身两个约数)

2.观察4、6、8、9、12的约数,你发现了什么?

(板书:除了1和它本身还有别的约数)

3.教师明确:根据这些数约数的个数的多少,给这些数分类,也就是今天我们要学习

的新知识,质数和合数.(板书课题:质数和合数)

(四)质数、合数的定义.

1.一个数,如果只有1和它本身两个约数,这样的数叫做质数.(或素数)(板书)

2.一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.(板书)

3.教师提问:1是质数还是合数?

学生明确:1既不是质数也不是合数,因为1只有一个约数,既不符合质数的特点,又不符合合数的特点.

1既不是质数,也不是合数.(板书)

(五)按约数个数的多少给自然数分类.

1.按照能否被2整除可以把自然数分为奇数、偶数,那么,按照约数个数的多少,自然数又可以分为哪几类?(三类:质数、合数和1)

2.教师提问:判断一个数是质数还是合数,关键是找什么?(关键:找约数的个数)

(六)教学例2.

1.判断下面各数,哪些是质数,哪些是合数.

17     22     29     35     37     87

(学生独立练习,集体订正)

教师强调:熟练运用找约数的方法,这种做题法是做对题的关键.

2.反馈练习: 下面哪些数是质数,哪些数是合数?

19     21     43     67

(七)介绍100以内的质数表.

1.除了用找约数的方法判断一个数是质数还是合数,还可以用查质数表的方法.

2.用质数表检查例2

检查方法;表中有17、29、37,说明是质数;

22、35、87表中没有,又不是1,说明是合数.

篇12:分解质因数2(人教版五年级教案设计)

教学目的

1.使学生理解质因数、分解质因数的意义,初步会把一个合数分解质因数.

2.培养学生观察、比较、抽象、概括的能力.

教学重点

质因数和分解质因数的意义.

教学难点

用短除式分解质因数.

教学过程

一、引入

1.在5、13、21、32中,哪些是质数?哪些是合数?为什么?

2.把上面各数用两个自然数相乘的形式表示出来.

5=(   )×(   ) 13=(   )×(   )

21=(   )×(   ) 32=(   )×(   )

教师:填出的这些数与原数有什么关系?

3.以上几个自然数都可以用两个因数相乘的形式表示,其它的自然数行吗?

教师:用一句话来概括,一个自然数可以用什么形式表示出来?

板书:把一个自然数用两个因数相乘的形式表示出来.

二、新授

1.如果我们做一个规定,“1除外”(板书于因数外),也就是因数不能用1,这句话还能这么说吗?举例说明.

教师:在因数不用1的前提下,什么数仍能用两个因数相乘的形式表示,什么数就不能?

(合数能,质数不能)

板书:把一个合数用两个因数(1除外)相乘的形式表示出来.

2.根据这条结论把下面几个合数用两个因数相乘的形式表示出来.

6、15、24、28

6=2×3 24=2×12

15=3×5  =3×8

=4×6

28=4×7

=2×14

3.这些合数(指24、28)的因数中还有合数12、8、6……根据刚才的结论又可以用什么形式表示?现在不限制因数的个数(擦去结论中的“两个”)把这些合数用最多个因数相乘的形式表示出来.

组织学生讨论汇报.

24=2×2×2×3

教师:6和15还能不能用更多个因数相乘的形式表示?为什么不能?

明确:这些因数都是质数,根据这一特点,我们给它们起一个名字?(质因数)

根据黑板上的例子说一说什么叫质因数?

4.反馈练习

6的质因数有( ).2和3是6的( )

2和3还是谁的质因数?24的质因数有哪些?

28的质因数有哪些?

如果说3和5是质因数对吗?怎么改?

(12、4、6……)这几个因数是不是质因数?

5.现在我们是把一个合数用什么形式表示出来?

教师根据学生回答在原结论中添上“质”字,去掉“1除外”.

同步板书课题:分解质因数.

三、练习

1.判断下面各题,对的画“√”,错的画“×”,并说明理由.

(1)35分解质因数是35=1×5×7 (   )

(2)60分解质因数是60=2×3×10(   )

(3)27分解质因数是27=3×3×3 (   )

(4)14分解质因数是2×7=14 (   )

2.把下面各数分解质因数.

(1)口答:4、6、8、9、10.

(2)笔答:16、18、54.

3.把9、90、900分解质因数,你发现什么?

四、小结

什么叫质因数?什么叫分解质因数?分解质因数时我们要注意哪些问题?

五、作业

1.把下面各数分解质因数.

8    12    16    24    54    72

2.下面的数是由哪几个质数相乘得到的.

10   21    27    35    49    50

六、板书设计

篇13:拔萝卜(2)(人教版教案设计)

教材分析

拔萝卜--两位数加减两位数(不进位、不退位)是义务教育课程标准实验教科书数学(北师大版)一年级下册第3单元《加与减(一)》中的内容。

本课时的内容是在整十数加减法、两位数加减一位数(不进位、不退位)的基础上安排的。教材先提供了小兔子拔萝卜的情境,从中引出问题:“一共拔了多少个萝卜?”让学生自己列式计算,并说出计算过程。教材中提供了四种计算方法(并非让学生全部掌握,学生还可以有别的方法)。在学了加法计算之后,让学生试着计算:“小白兔比小黑兔少拔了多少个萝卜?”以促使学生从加法计算迁移到减法计算上去。这是新教材与旧教材的最大不同。

学生分析

学生已有整十数加减整十数、两位数加减一位数(不进位、不退位)的知识作为基础,有一小部分学生在上学前已对竖式有简单的了解。对于看图编故事和从图中提出问题,前面的学习中已有过练习。这些都是本节课学生学习的前提条件。

设计理念

在本节课中,力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲自体验知识的形成过程,促进学生思维的发展。

教学目标

1.自己探索100以内两位数加减两位数(不进位、不退位)的计算方法。

2.从加法计算方法迁移得出减法的计算方法,培养初步的知识迁移能力。

教学流程

一、创设情境。

师:同学们,老师这儿有一幅画,谁能用一个好听的故事把它讲给大家听?

生:森林里住着小兔一家人。有一天,兔哥哥出去玩,忽然看见一片萝卜地,这儿全是它喜欢吃的萝卜。它赶紧跑回家叫来妹妹,一起拔萝卜。兔哥哥一下拔了36个萝卜,兔妹妹拔了23个萝卜。

(师生掌声起,该生很高兴,甜甜地笑了。)

【在这个环节中,力图创设一种具体的情境,让学生在情境中学习,引起学生学习的兴趣。】

二、讨论。

师:从图中你知道了什么?

生A:我知道了兔哥哥拔得多,兔妹妹拔得少。

师:你还能提出哪些问题?

生A:为什么兔哥哥拔得多,兔妹妹拔得少?

师:谁能帮他解决这个问题?

生B:因为兔哥哥大,兔妹妹小。

生C:因为兔哥哥长得壮,比兔妹妹力气大。

师:(对生A)他们的回答,你满意吗?

生A笑着点点头。

生D:为什么兔哥哥不把自己的萝卜分给妹妹一些呢?

生E:兔哥哥长得高,吃得多;兔妹妹小,吃得少。两个人的萝卜刚够自己吃。

生F:它们两个是一家人,拿回家后一起吃。

生G:我想知道,兔哥哥和兔妹妹一共拔了多少个萝卜?

生H:兔哥哥比兔妹妹多拔了多少个?

生I:兔妹妹比兔哥哥少拔了多少个?

(教师将生G、生H、生I的问题板书在黑板上。)

【在这一环节,让学生看懂图中的意思,再在此基础上提出问题,培养学生从实际生活中提出问题的能力,体会数学问题从生活中来。同时学生自己提出的问题更乐于自己解决。】

三、探索加法的计算方法。

师:同学们提出了好多问题,有的咱们已经解决了,这儿还有三个问题(指黑板),咱们来解决“一共拔了多少个萝卜”的问题。怎样列算式呢?

生:36+23=?(有的学生已报出结果。)

师:算出结果的同学想一想自己是怎么算出来的。其他同学自己想办法计算36+23的结果,可以用小棒、算盘、练习本等。

(学生动手探究,教师巡视,对有困难的学生引导、帮助。)

学生汇报自己的计算方法:

生A:我是用摆小棒的方法计算。我在左边摆3捆零6根,就是36,在右边摆2捆零3根,就是23。然后数一数,一共5捆零9根,就知道36+23=59。

生B:我是拨计数器算的。我先在十位上拨了3个珠子,在个位拨6个珠子是36,再在十位上拨2个珠子,在个位上拨3个珠子,一看是59。

生C:我是用口算得出的,6+3=9,30+20=50,50+9=59。

生D:我也是用口算得出的,36+3=39,39+20=59。

生E:我也是用口算得出的,36+20=56,56+3=59。

生F:我是用竖式计算的(边列竖式边说),先写一个加数36,再写第二个加数23,并把加号写在第二个加数的左边,写好后在下面画一条横线,再计算:30+20=50,6+3=9,答案也是59。

师:很好。在列竖式时一定要注意,两个加数中个位的两个数上下要对齐,十位上的两个数也要对齐。然后再计算:个位上6+3=9,把9也写在个位上,和上面对齐,十位上3个10加2个10是5个10,5写在十位上,和上面对齐。

师:以上四种方法:摆小棒、拨计数器、口算、列竖式,你认为哪种最简单?

生A:我认为列竖式简单。

生B:我认为口算简单。

【在这个环节中,学生自己探索计算36+23的方法,发挥了学生的主体性,让学生亲身经历知识结论的形成过程,发展了学生的思维。算法多样化充分关注学生的个体差异,让学生根据自己的情况在原有基础上提高,又注意了算法的优化,使学生从比较中选择更简便的方法。学生还根据自己的实际灵活处理,在口算与竖式中任选一种。】

四、探究类推减法的计算方法。

师:刚才大家通过自己的努力解决了一个问题,后面还有两个问题,同学们可以以小组为单位选择其中的一个问题,四个人共同去解决。

学生以小组为单位,选择并讨论解决问题。

小组长汇报:

组A:我们解决第一个问题,兔哥哥比兔妹妹多拔了多少个萝卜,我们的算式是36-23=13。

师:你们是怎样计算36-23的?

组A:我们用口算,6-3=3,30-20=10,10+3=13。

组B:我们列竖式(边写边说),先写第一个数36,再写第二个数23,6-3=3,3-2=1。

师:是3-2=1吗?

生:是3个10减2个10等于1个10。

组3:我们解决第二个问题,算式也是36-23=13。也用口算,30-20=10,6-3=3,10+3=13。

【在学生已探索出加法的计算方法的基础上,再让学生探索减法的计算方法,学生很容易由加法类推到减法,由此培养学生初步的知识迁移能力;同时让学生自主选择,发挥学生的主体性,再一次调动起学生学习的兴趣,以小组为单位,共同解决问题,培养学生的合作意识和合作能力。】

五、总结。

师:在这节课中,你们认为自己表现得如何?

生A:我认为自己表现得很好。

师:哪一点表现得很好?

生A:老师提的问题我认真思考,还积极发言了,而且我讲的故事很好。

生B:我认为自己表现得还可以,我也积极发言了。

生C:我认为自己表现得不好,我把36+23算错了。

师:同学们也可以评价一下别人。

学生踊跃发言,都很注意发现其他学生的长处。

师:在这节课中,有好多同学都表现得好,他们认真思考,积极发言,而且把小组活动组织得很好。大部分同学也都能好好地去学习,个别同学没积极思考,老师希望你下一节课有所进步。

【本环节教师将自己评、他人评,评自己、评别人和教师评、学生评结合起来,让学生对自己整节课的表现有一个回顾和反思。】

课后反思

在本节课的教学中,比较满意的是:

1.学生兴趣浓,积极性高,思维活跃,课堂气氛好。

本节课先以学生喜闻乐见的童话故事将学生带入具体的情境中,让学生自己提出问题,不再只是听,而是让学生在课堂中充分动起来,一节课完全顺其自然地进行,学生并没有刻意调整自己注意力的举动,在不知不觉中学会了知识,思考了问题。整节课都围绕学生来进行,学生是课堂的中心,真正成了学习的主人,他们积极思考,踊跃发言,争着抢着回答问题,充分体现了“我要学”的强烈愿望。

2.本节课打破了学科界线,关注了学生的发展。

现在的学科理念是:学科本身并不是核心内容,它们只是一种促进学生发展的媒介。本节课中学生看图编故事、从图中提问、对于问题的回答、交流自己的计算过程、课后对表现的评价,全是关注学生的发展,这已不能简单地将它仅仅划入数学学科的范畴。

3.本节课让学生自己经历、体验知识、结论形成的过程,自己去探索方法,并从课堂上体验到成功的快乐。

由此可以看出本节课并不只关注学生的知识与技能,同样也关注过程和方法、关注情感态度与价值观。

篇14:小学五年级数学《求平均数》教案

一、说教材

1、教学内容:义务教育六年制小学数学“平均数”。

2、教材分析:

随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即理解平均数的含义和求平均的方法。

3、教学重难点:

平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以理解平均数的意义,掌握求平均数的计算方法是教学的重点。而“平均数”又和过去学过的“平均分”的意义不同,正确理解平均数的实际意义和应用就是教学的难点。

4、教学目标:

基于这样的认识,教学中我们就不能只停留在“简单地给出若干数据,要求学生计算出它们的平均数”上,而应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。为此,我制定了以下三条教学目标:

知识目标:使学生理解平均数的含义,会解释平均数的实际意义,掌握求平均数的方法。

能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。

情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。

二、说教法:

由于“平均数”意义比较抽象,难以理解,容易使学生产生畏难情绪。“求平均数”作为一类应用题,而现行教材中应用题往往脱离生活实际,使学生感到枯燥乏味。因此,我根据学生由感知——表象——抽象的认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。

三、说学法:

在学法指导上,我努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。

四、说教学过程:

(一)创设情境,初步感知

课一开始,我用多媒体出示这样的情景:“星期天,三个好伙伴一起去钓鱼。他们分别钓了6条、11条、4条。请你想个办法,使他们的鱼同样多。”[由熟悉的生活情景引入,使学生体会到数学就在身边,生活中处处离不开数学,从而对数学知识产生亲切感,能更好地激发学生爱数学、学数学的兴趣。]

接着让学生动手操作火柴棒,要求以最快的速度摆出结果,然后让学生闭上眼睛反思刚才的操作过程,概括出“移多补少”的方法。再用多媒体继续演示“又来了一个同学,他钓了11条”,让学生在头脑中想象“移”的过程并交流。[我们知道“平均数”与“平均分”是不同的概念。因为平均分得的结果是一个实实在在的量,而平均数却只是一个表示中间状态的抽象数量。因而在教学时,我并未让学生进行操作,而是通过让学生在交流与想象中感受“平均数”的实际意义,为随后的深化作好预设。]

学生的认识刚刚获得平衡,我又用多媒体巧妙设置冲突:“又来了四个同学,分别钓了10条、7条、9条、8条”,仍旧让学生在头脑中想象,学生觉得用“移多补少”的方法太麻烦了,该怎么办呢?[迫使他们自觉突破思维定势,换角度寻求解决问题的策略,从而获得求平均数的一般方法,]即“先合并再平分”,并要求列式计算,[这个过程其实就是“数学化”的过程,它对于培养学生用数学的眼光观察、思考问题有着实际的意义。]

最后,让学生为操作后得到的结果“7”起个名字,从而引出“平均数”及其含义。

篇15:小学五年级数学《求平均数》教案

(二)联系生活,提出问题

在学生初步理解了“平均数”的含义后,我又联系学生熟悉的“买半票”引出身高的话题,让学生介绍一下自己的身高,随意抽取几位作比较。接着,我又请第一排和最后一排同学起立,比较身高并说说你是怎么比的。学生会觉得这个问题太容易了,因为坐在最后的同学往往个子比较高。我又请第3小组和第4小组同学起立,再进行比较,学生发现高矮不一,不好比,想到把每人的身高加起来再比,又发现两组人数不一样,还是无法比较。

学生悬念顿生,思维处于欲罢不能的愤悱状态,我抓住时机设疑:“有没有更好的办法,能准确地比较出这两组同学哪组更高一些?”鼓励学生充分发表意见,引导总结出最佳方法是通过求他们的平均身高来比较。[“学起于思,思源于疑。”通过问题情境的创设,为探索活动提供了动力,明确了方向,使学生进入“心求通而未得,口欲言而未能”的境界,激发了他们的探究欲望。]

(三)自主探究,合作交流

明确了探究方向即求每一个小组的平均身高后,我便组织学生开展讨论:“要求每一小组的平均身高,要作哪些方面的准备工作?”让学生懂得要先收集每个同学的身高才能计算。[源于学生身边真实的数学问题,正好激发了学生开展研究的兴趣,促使他们主动进行合作,以取得小组竞赛的胜利。]

在音乐声中,以学生小组为单位开始了活动。允许学生离开座位,独立收集小组内每个同学的身高填入统计表中,计算出平均身高,然后在组内交流计算方法,统一结果,由组长填入汇总表中。[这儿,教师充分发挥学生的主体作用,放手让他们在开放的活动空间里自主探索,解决问题。教师只是以参与者、合作者的身份融入他们的活动中,和他们平等相处,热心帮助他们处理突发事件,并及时获取反馈信息,]在投影仪上展示交流各种计算方法,一一加以肯定,鼓励简便算法,并总结基本方法:总数/份数=平均数。紧接着激发学生思考:“第1小组的平均身高为138厘米,所以他们组每个同学的身高一定是138厘米。对吗?”[通过辨析进一步理解平均数的意义,培养学生多角度看问题的能力。]

最后引导学生观察表格,比较第3小组和第4小组哪组更高,使学生体验用自己的探索解决问题的成功。在此基础上,让学生继续挖掘表格中隐藏的信息,交流体会,提出新的问题“全班同学的平均身高是多少?”,让学生估算,再通过笔算验证,培养学生的估算能力。知道全班同学的平均身高后,我又顺势出示全国四年级小学生10年前和现在的平均身高统计表,让学生联系自身实际进行比较,教育学生要积极锻炼,并且珍惜幸福的生活!

(四)实践运用,体验生活

数学来源于生活,又要应用于生活,才能体现其价值及魅力。在学生理解了“平均数”的含义,学会了求“平均数”的方法后,我又引入了以下现实情境:

1、小明班同学的平均身高是140厘米,所以他的身高一定是140厘米。对吗?

2、上明班同学的平均身高是140厘米,小强班同学的平均身高是137厘米,可以说小明一定比小强高吗?

3、游泳池的平均水深是130厘米,小明身高140厘米,他在游泳池中学游泳,会不会有危险?为什么?

4、老师发现我们家第二季度用电情况是这样的(投影电费单),你能用刚才学到的本领,帮我预测一下我家这个月的用电情况,好吗?你为什么这么认为?

[通过情境的辨析,问题的解决,既深化了学生对“平均数”概念的认识,体会到“求平均数”在日常生活中的实际意义,同时也为学生创造了自由表达、广泛交流的机会,提升了他们“数学交流”的能力。]

为了让学生感受平均数的用途广泛,我又让学生自由交流生活中所见到过的平均数,再通过报刊新闻开扩学生的视野,体会平均数在各行各业中的广泛用途。

(五)评价总结,拓展延伸

课末,我让学生当评委给这节课打分,当学生为最后得分争论不休时,及时设疑:“以谁的分数为标准呢?什么分数是最公正的?”引导学生主动运用所学知识解决问题。[看似随意一笔,却足见教师的匠心。通过“给教师打分”及平均分的计算,既强化了本课的新知,再现了“求平均数”在生活中的实际应用,又使老师得到真实的信息反馈,同时还为随后的课堂小结作了巧妙的预设,可谓“一举三得”。]

最后,让学生谈谈这节课的收获,打算如何运用。[让学生自我评价,增强学生数学学习的自信心;对课堂的拓展延伸,进一步激发学生继续探究的兴趣。]

本文标签: 求平均数2(人教版五年级教案设计)