admin管理员组

文章数量:1794759

学习率预热(transformers.get

学习率预热(transformers.get

1. 什么是warmup

warmup是针对学习率learning rate优化的一种策略,主要过程是,在预热期间,学习率从0线性(也可非线性)增加到优化器中的初始预设lr,之后使其学习率从优化器中的初始lr线性降低到0,如下图所示:

上图中初始learning rate设置为0.0001,设置warm up的步数为100步

2. warmup的作用

由于刚开始训练时,模型的权重(weights)是随机初始化的,此时若选择一个较大的学习率,可能带来模型的不稳定(振荡),选择Warmup预热学习率的方式,可以使得开始训练的几个epoches或者一些steps内学习率较小,在预热的小学习率下,模型可以慢慢趋于稳定,等模型相对稳定后再选择预先设置的学习率进行训练,使得模型收敛速度变得更快,模型效果更佳

3. transformers.get_linear_schedule_with_warmup使用 from transformers import AdanW, get_linear_schedule_with_warmup optimizer = AdamW(model.parameters(), lr=lr, eps=adam_epsilon) len_dataset = 3821 # 可以根据pytorch中的len(Dataset)计算 epoch = 30 batch_size = 32 total_steps = (len_dataset // batch_size) * epoch if len_dataset % batch_size = 0 else (len_dataset // batch_size + 1) * epoch # 每一个epoch中有多少个step可以根据len(DataLoader)计算:total_steps = len(DataLoader) * epoch warm_up_ratio = 0.1 # 定义要预热的step scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = warm_up_ratio * total_steps, num_training_steps = total_steps) ...... optimizer.step() scheduler.step() optimizer.zero_grad()

get_linear_schedule_with_warmup参数说明: optimizer: 优化器 num_warmup_steps:初始预热步数 num_training_steps:整个训练过程的总步数

get_linear_schedule_with_warmup是learning rate线性增加和线性衰减,也有非线性的,如下定义了不同类型的warmup策略:

def _get_scheduler(self, optimizer, scheduler: str, warmup_steps: int, t_total: int): """ Returns the correct learning rate scheduler """ scheduler = scheduler.lower() if scheduler == 'constantlr': return transformers.get_constant_schedule(optimizer) elif scheduler == 'warmupconstant': return transformers.get_constant_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps) elif scheduler == 'warmuplinear': return transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total) elif scheduler == 'warmupcosine': return transformers.get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total) elif scheduler == 'warmupcosinewithhardrestarts': return transformers.get_cosine_with_hard_restarts_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total) else: raise ValueError("Unknown scheduler {}".format(scheduler))

注意:当num_warmup_steps参数设置为0时,learning rate没有预热的上升过程,只有从初始设定的learning rate 逐渐衰减到0的过程

图2. warmupcosine 4. 实验 def train(trainset, evalset, model, tokenizer, model_dir, lr, epochs, device): optimizer = AdamW(model.parameters(), lr=lr) batch_size = 3 # 每一个epoch中有多少个step可以根据len(DataLoader)计算:total_steps = len(DataLoader) * epoch total_steps = (len(trainset)) * epochs scheduler = get_cosine_schedule_with_warmup( optimizer, num_warmup_steps=100, num_training_steps=total_steps) model, optimizer = amp.initialize(model, optimizer, opt_level="O1") lr_record = [] for epoch in tqdm(range(epochs), desc="epoch"): train_loss, steps = 0, 0 for batch in tqdm(trainset, desc="train"): batch = tuple(input_tensor.to(device) for input_tensor in batch if isinstance(input_tensor, torch.Tensor)) input_ids, label, mc_ids = batch steps += 1 model.train() loss, logits = model(input_ids=input_ids, mc_token_ids=mc_ids, labels=label) # loss.backward() with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() train_loss += loss.item() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), 5) # torch.nn.utils.clip_grad_norm_(model.parameters(), 5) optimizer.step() scheduler.step() optimizer.zero_grad() lr_record.append(scheduler.get_lr()[0]) if steps % 500 == 0: print("step:%d avg_loss:%.3f"%(steps, train_loss/steps)) plot(lr_record) eval_res = evaluate(evalset, model, device) os.makedirs(model_dir, exist_ok=True) model_path = os.path.join(model_dir, "gpt2clsnews.model%d.ckpt"%epoch) model.save_pretrained(model_path) tokenizer.save_pretrained(os.path.join(model_dir,"gpt2clsnews.tokinizer")) logging.info("checkpoint saved in %s"%model_dir) 5. 参考

Python transformers.get_linear_schedule_with_warmup() Examples Warmup预热学习率 关于warm up(transformers.get_linear_schedule_with_warmup)

本文标签: transformers