admin管理员组

文章数量:1794759

YoloV8改进策略:FastVit与YoloV8完美融合,重参数重构YoloV8网络(全网首发)

摘要

FastViT是一种混合ViT架构,它通过引入一种新型的token混合运算符RepMixer来达到最先进的延迟-准确性权衡。RepMixer通过消除网络中的跳过连接来降低内存访问成本。FastViT进一步应用训练时间过度参数化和大核卷积来提高准确性,并根据经验表明这些选择对延迟的影响最小。实验结果表明,FastViT在移动设备上的速度比最近的混合Transformer架构CMT快3.5倍,比EfficientNet快4.9倍,比ConvNeXt快1.9倍。在相似的延迟下,FastViT在ImageNet上的Top-1精度比MobileOne高出4.2%。此外,FastViT模型能够较好的适应域外和破损数据,相较于其它SOTA架构具备很强的鲁棒性和泛化性能。

Yolov8官方结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary (fused): 268 layers, 43631280 parameters, 0 gradients, 165.0 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 29/29 [
                   all        230       1412      0.922      0.957      0.986      0.737
                   c17        230        131      0.973      0.992      0.995      0.825
                    c5        230         68      0.945          1      0.995      0.836
            helicopter        230         43       0.96      0.907      0.951      0.607
                  c130        230         85      0.984          1      0.995      0.655
                   f16        230         57      0.955      0.965      0.985      0.669
                    b2        230          2      0.704          1      0.995      0.722
                 other        230         86      0.903      0.942      0.963      0.534
                   b52        230         70       0.96      0.971      0.978      0.831
                  kc10        230         62      0.999      0.984       0.99      0.847
               command        230         40       0.97          1      0.995      0.811
                   f15        230        123      0.891          1      0.992      0.701
                 kc135        230         91      0.971      0.989      0.986      0.712
                   a10        230         27          1      0.555      0.899      0.456
                    b1        230         20      0.972          1      0.995      0.793
                   aew        230         25      0.945          1       0.99      0.784
                   f22        230         17      0.913          1      0.995      0.725
                    p3        230        105       0.99          1      0.995      0.801
                    p8        230          1      0.637          1      0.995      0.597
                   f35        230         32      0.939      0.938      0.978      0.574
                   f18        230        125      0.985      0.992      0.987      0.817
                   v22        230         41      0.983          1      0.995       0.69
                 su-27        230         31      0.925          1      0.995      0.859
                 il-38        230         27      0.972          1      0.995      0.811
                tu-134        230          1      0.663          1      0.995      0.895
                 su-33        230          2          1      0.611      0.995      0.796
                 an-70        230          2      0.766          1      0.995       0.73
                 tu-22        230         98      0.984          1      0.995      0.831
Speed: 0.2ms preprocess, 3.8ms inference, 0.0ms loss, 0.8ms postprocess per image

改进一

测试结果

结果1

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary: 508 layers, 54679728 parameters, 0 gradients, 209.6 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:02<00:00,  7.32it/s]
                   all        230       1412      0.969      0.971      0.989      0.759
                   c17        230        131      0.989      0.985      0.994       0.84
                    c5        230         68      0.953          1      0.993      0.841
            helicopter        230         43      0.968      0.953      0.982      0.615
                  c130        230         85          1      0.993      0.995      0.661
                   f16        230         57          1      0.955      0.992      0.681
                    b2        230          2      0.908          1      0.995      0.749
                 other        230         86          1      0.969      0.984      0.575
                   b52        230         70      0.986      0.981      0.985      0.841
                  kc10        230         62      0.998      0.984      0.989      0.851
               command        230         40      0.994          1      0.995      0.856
                   f15        230        123      0.976      0.984      0.994        0.7
                 kc135        230         91      0.993      0.989      0.991      0.715
                   a10        230         27          1       0.48      0.891      0.423
                    b1        230         20      0.973          1      0.995      0.761
                   aew        230         25      0.953          1      0.995      0.799
                   f22        230         17      0.926          1      0.995      0.736
                    p3        230        105      0.998          1      0.995      0.808
                    p8        230          1      0.865          1      0.995      0.796
                   f35        230         32          1      0.958      0.994      0.549
                   f18        230        125      0.989      0.992      0.994      0.836
                   v22        230         41      0.994          1      0.995      0.701
                 su-27        230         31       0.99          1      0.995      0.875
                 il-38        230         27      0.989          1      0.995       0.86
                tu-134        230          1      0.834          1      0.995      0.995
                 su-33        230          2          1      0.986      0.995      0.759
                 an-70        230          2      0.897          1      0.995      0.851
                 tu-22        230         98      0.997          1      0.995       0.83
Speed: 0.1ms preprocess, 6.4ms inference, 0.0ms loss, 0.4ms postprocess per image


结果2

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary: 628 layers, 41607216 parameters, 0 gradients, 158.0 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|##########| 15/15 [00:02<00:00,  6.23it/s]
                   all        230       1412      0.963      0.973      0.986      0.767
                   c17        230        131      0.992      0.996      0.995       0.86
                    c5        230         68       0.95          1      0.992      0.855
            helicopter        230         43      0.955          1      0.977      0.607
                  c130        230         85      0.992          1      0.995       0.68
                   f16        230         57          1      0.968      0.995      0.692
                    b2        230          2      0.891          1      0.995      0.847
                 other        230         86      0.964      0.924      0.968      0.549
                   b52        230         70      0.986      0.982       0.99      0.873
                  kc10        230         62      0.999      0.984      0.989      0.856
               command        230         40      0.993          1      0.995      0.857
                   f15        230        123      0.966          1      0.993      0.696
                 kc135        230         91      0.984      0.989      0.986      0.709
                   a10        230         27          1       0.64      0.874      0.489
                    b1        230         20          1      0.967      0.995      0.783
                   aew        230         25      0.951          1      0.995      0.788
                   f22        230         17      0.978          1      0.995      0.758
                    p3        230        105          1      0.988      0.995      0.818
                    p8        230          1      0.836          1      0.995      0.597
                   f35        230         32      0.965      0.852      0.946      0.566
                   f18        230        125      0.983      0.992       0.99      0.834
                   v22        230         41      0.986          1      0.995      0.736
                 su-27        230         31      0.991          1      0.995      0.882
                 il-38        230         27      0.989          1      0.995      0.891
                tu-134        230          1      0.835          1      0.995      0.995
                 su-33        230          2       0.92          1      0.995      0.751
                 an-70        230          2      0.894          1      0.995      0.895
                 tu-22        230         98      0.998          1      0.995      0.851
Speed: 0.1ms preprocess, 7.0ms inference, 0.0ms loss, 0.5ms postprocess per image

改进二

测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary: 898 layers, 30677808 parameters, 0 gradients, 114.3 GFLOPs

                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:02<00:00,  7.23it/s]
                   all        230       1412      0.965      0.979      0.992       0.77
                   c17        230        131      0.988          1      0.995      0.865
                    c5        230         68      0.975          1      0.995      0.863
            helicopter        230         43      0.956          1      0.977      0.632
                  c130        230         85      0.997          1      0.995      0.679
                   f16        230         57       0.99      0.965      0.987      0.692
                    b2        230          2      0.895          1      0.995      0.851
                 other        230         86      0.988      0.945      0.986      0.527
                   b52        230         70      0.996      0.986       0.99      0.868
                  kc10        230         62      0.995      0.984      0.989      0.873
               command        230         40      0.993          1      0.995      0.864
                   f15        230        123      0.976      0.992      0.995      0.701
                 kc135        230         91      0.997      0.989      0.992      0.699
                   a10        230         27          1      0.646      0.969      0.503
                    b1        230         20      0.986          1      0.995      0.762
                   aew        230         25      0.949          1      0.995      0.782
                   f22        230         17       0.92          1      0.989      0.789
                    p3        230        105      0.998          1      0.995      0.794
                    p8        230          1      0.818          1      0.995      0.697
                   f35        230         32      0.986      0.938      0.987      0.582
                   f18        230        125       0.99      0.992      0.992       0.84
                   v22        230         41      0.993          1      0.995      0.731
                 su-27        230         31      0.987          1      0.995      0.889
                 il-38        230         27      0.988          1      0.995      0.927
                tu-134        230          1      0.814          1      0.995      0.995
                 su-33        230          2          1          1      0.995      0.697
                 an-70        230          2       0.88          1      0.995      0.796
                 tu-22        230         98      0.997          1      0.995       0.88
Speed: 0.1ms preprocess, 4.8ms inference, 0.0ms loss, 0.6ms postprocess per image

改进三

测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary: 490 layers, 27270512 parameters, 0 gradients, 87.7 GFLOPs
val: Scanning E:\yolov8\ultralytics-main\datasets\VOC\labels\val.cache... 230 images, 0 backgrounds, 0 corrupt: 100%|██████████| 230/230 [00:00<?, ?it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:02<00:00,  6.10it/s]
                   all        230       1412      0.938      0.961      0.987      0.742
                   c17        230        131      0.976      0.992      0.994      0.822
                    c5        230         68      0.931      0.986      0.991      0.845
            helicopter        230         43      0.965          1      0.989      0.611
                  c130        230         85      0.977      0.985      0.993      0.654
                   f16        230         57      0.909      0.965      0.969      0.651
                    b2        230          2      0.822          1      0.995        0.7
                 other        230         86      0.887      0.942       0.97      0.512
                   b52        230         70      0.966      0.971      0.983      0.842
                  kc10        230         62       0.99      0.968      0.988      0.832
               command        230         40      0.985          1      0.995      0.829
                   f15        230        123      0.946      0.984      0.993      0.681
                 kc135        230         91      0.956      0.989      0.983       0.69
                   a10        230         27      0.998      0.741      0.941      0.449
                    b1        230         20      0.972       0.95      0.953      0.713
                   aew        230         25      0.944          1      0.984      0.772
                   f22        230         17      0.958          1      0.995      0.752
                    p3        230        105      0.999       0.99      0.995      0.809
                    p8        230          1      0.785          1      0.995      0.796
                   f35        230         32          1      0.915      0.982      0.522
                   f18        230        125      0.985      0.992      0.989      0.821
                   v22        230         41      0.994          1      0.995      0.688
                 su-27        230         31      0.937          1      0.995      0.856
                 il-38        230         27      0.983          1      0.995      0.846
                tu-134        230          1      0.722          1      0.995      0.895
                 su-33        230          2          1      0.575      0.995      0.796
                 an-70        230          2      0.759          1      0.995      0.802
                 tu-22        230         98      0.993          1      0.995      0.842
Speed: 0.2ms preprocess, 4.7ms inference, 0.0ms loss, 1.2ms postprocess per image

成绩有提升,但是不多,运算量降了不少!

改进四

测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary: 742 layers, 21079664 parameters, 0 gradients, 68.0 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:01<00:00, 10.20it/s]
                   all        230       1412      0.945      0.971      0.987      0.746
                   c17        230        131      0.977          1      0.995      0.844
                    c5        230         68      0.954          1      0.995      0.847
            helicopter        230         43      0.945      0.977      0.966      0.627
                  c130        230         85      0.981          1      0.995      0.655
                   f16        230         57          1      0.961      0.968       0.67
                    b2        230          2      0.837          1      0.995      0.749
                 other        230         86      0.878      0.922      0.962      0.481
                   b52        230         70      0.954      0.986      0.988      0.848
                  kc10        230         62      0.993      0.984      0.989      0.847
               command        230         40      0.987          1      0.995      0.836
                   f15        230        123      0.951          1      0.995      0.659
                 kc135        230         91      0.992      0.989      0.989      0.702
                   a10        230         27          1      0.617      0.964      0.388
                    b1        230         20      0.962          1      0.995       0.68
                   aew        230         25      0.944          1      0.986      0.755
                   f22        230         17      0.923          1      0.995      0.751
                    p3        230        105      0.981      0.971      0.994      0.796
                    p8        230          1      0.744          1      0.995      0.796
                   f35        230         32      0.963      0.812      0.932      0.531
                   f18        230        125      0.991      0.992      0.989      0.822
                   v22        230         41       0.99          1      0.995      0.694
                 su-27        230         31      0.982          1      0.995       0.87
                 il-38        230         27      0.977          1      0.995      0.881
                tu-134        230          1      0.851          1      0.995      0.895
                 su-33        230          2      0.916          1      0.995      0.796
                 an-70        230          2      0.837          1      0.995      0.895
                 tu-22        230         98          1      0.994      0.995      0.825
Speed: 0.2ms preprocess, 2.8ms inference, 0.0ms loss, 0.5ms postprocess per image

运算量进一步降低,成绩进一步提高!

文章和代码链接:

.2014.3001.5502

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。原始发表:2023-10-12,如有侵权请联系 cloudcommunity@tencent 删除网络重构测试架构连接

本文标签: YoloV8改进策略FastVit与YoloV8完美融合,重参数重构YoloV8网络(全网首发)