admin管理员组文章数量:1794759
YoloV8改进策略:FastVit与YoloV8完美融合,重参数重构YoloV8网络(全网首发)
摘要
FastViT是一种混合ViT架构,它通过引入一种新型的token混合运算符RepMixer来达到最先进的延迟-准确性权衡。RepMixer通过消除网络中的跳过连接来降低内存访问成本。FastViT进一步应用训练时间过度参数化和大核卷积来提高准确性,并根据经验表明这些选择对延迟的影响最小。实验结果表明,FastViT在移动设备上的速度比最近的混合Transformer架构CMT快3.5倍,比EfficientNet快4.9倍,比ConvNeXt快1.9倍。在相似的延迟下,FastViT在ImageNet上的Top-1精度比MobileOne高出4.2%。此外,FastViT模型能够较好的适应域外和破损数据,相较于其它SOTA架构具备很强的鲁棒性和泛化性能。
Yolov8官方结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary (fused): 268 layers, 43631280 parameters, 0 gradients, 165.0 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 29/29 [
all 230 1412 0.922 0.957 0.986 0.737
c17 230 131 0.973 0.992 0.995 0.825
c5 230 68 0.945 1 0.995 0.836
helicopter 230 43 0.96 0.907 0.951 0.607
c130 230 85 0.984 1 0.995 0.655
f16 230 57 0.955 0.965 0.985 0.669
b2 230 2 0.704 1 0.995 0.722
other 230 86 0.903 0.942 0.963 0.534
b52 230 70 0.96 0.971 0.978 0.831
kc10 230 62 0.999 0.984 0.99 0.847
command 230 40 0.97 1 0.995 0.811
f15 230 123 0.891 1 0.992 0.701
kc135 230 91 0.971 0.989 0.986 0.712
a10 230 27 1 0.555 0.899 0.456
b1 230 20 0.972 1 0.995 0.793
aew 230 25 0.945 1 0.99 0.784
f22 230 17 0.913 1 0.995 0.725
p3 230 105 0.99 1 0.995 0.801
p8 230 1 0.637 1 0.995 0.597
f35 230 32 0.939 0.938 0.978 0.574
f18 230 125 0.985 0.992 0.987 0.817
v22 230 41 0.983 1 0.995 0.69
su-27 230 31 0.925 1 0.995 0.859
il-38 230 27 0.972 1 0.995 0.811
tu-134 230 1 0.663 1 0.995 0.895
su-33 230 2 1 0.611 0.995 0.796
an-70 230 2 0.766 1 0.995 0.73
tu-22 230 98 0.984 1 0.995 0.831
Speed: 0.2ms preprocess, 3.8ms inference, 0.0ms loss, 0.8ms postprocess per image
改进一
测试结果
结果1
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary: 508 layers, 54679728 parameters, 0 gradients, 209.6 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:02<00:00, 7.32it/s]
all 230 1412 0.969 0.971 0.989 0.759
c17 230 131 0.989 0.985 0.994 0.84
c5 230 68 0.953 1 0.993 0.841
helicopter 230 43 0.968 0.953 0.982 0.615
c130 230 85 1 0.993 0.995 0.661
f16 230 57 1 0.955 0.992 0.681
b2 230 2 0.908 1 0.995 0.749
other 230 86 1 0.969 0.984 0.575
b52 230 70 0.986 0.981 0.985 0.841
kc10 230 62 0.998 0.984 0.989 0.851
command 230 40 0.994 1 0.995 0.856
f15 230 123 0.976 0.984 0.994 0.7
kc135 230 91 0.993 0.989 0.991 0.715
a10 230 27 1 0.48 0.891 0.423
b1 230 20 0.973 1 0.995 0.761
aew 230 25 0.953 1 0.995 0.799
f22 230 17 0.926 1 0.995 0.736
p3 230 105 0.998 1 0.995 0.808
p8 230 1 0.865 1 0.995 0.796
f35 230 32 1 0.958 0.994 0.549
f18 230 125 0.989 0.992 0.994 0.836
v22 230 41 0.994 1 0.995 0.701
su-27 230 31 0.99 1 0.995 0.875
il-38 230 27 0.989 1 0.995 0.86
tu-134 230 1 0.834 1 0.995 0.995
su-33 230 2 1 0.986 0.995 0.759
an-70 230 2 0.897 1 0.995 0.851
tu-22 230 98 0.997 1 0.995 0.83
Speed: 0.1ms preprocess, 6.4ms inference, 0.0ms loss, 0.4ms postprocess per image
结果2
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary: 628 layers, 41607216 parameters, 0 gradients, 158.0 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|##########| 15/15 [00:02<00:00, 6.23it/s]
all 230 1412 0.963 0.973 0.986 0.767
c17 230 131 0.992 0.996 0.995 0.86
c5 230 68 0.95 1 0.992 0.855
helicopter 230 43 0.955 1 0.977 0.607
c130 230 85 0.992 1 0.995 0.68
f16 230 57 1 0.968 0.995 0.692
b2 230 2 0.891 1 0.995 0.847
other 230 86 0.964 0.924 0.968 0.549
b52 230 70 0.986 0.982 0.99 0.873
kc10 230 62 0.999 0.984 0.989 0.856
command 230 40 0.993 1 0.995 0.857
f15 230 123 0.966 1 0.993 0.696
kc135 230 91 0.984 0.989 0.986 0.709
a10 230 27 1 0.64 0.874 0.489
b1 230 20 1 0.967 0.995 0.783
aew 230 25 0.951 1 0.995 0.788
f22 230 17 0.978 1 0.995 0.758
p3 230 105 1 0.988 0.995 0.818
p8 230 1 0.836 1 0.995 0.597
f35 230 32 0.965 0.852 0.946 0.566
f18 230 125 0.983 0.992 0.99 0.834
v22 230 41 0.986 1 0.995 0.736
su-27 230 31 0.991 1 0.995 0.882
il-38 230 27 0.989 1 0.995 0.891
tu-134 230 1 0.835 1 0.995 0.995
su-33 230 2 0.92 1 0.995 0.751
an-70 230 2 0.894 1 0.995 0.895
tu-22 230 98 0.998 1 0.995 0.851
Speed: 0.1ms preprocess, 7.0ms inference, 0.0ms loss, 0.5ms postprocess per image
改进二
测试结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary: 898 layers, 30677808 parameters, 0 gradients, 114.3 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:02<00:00, 7.23it/s]
all 230 1412 0.965 0.979 0.992 0.77
c17 230 131 0.988 1 0.995 0.865
c5 230 68 0.975 1 0.995 0.863
helicopter 230 43 0.956 1 0.977 0.632
c130 230 85 0.997 1 0.995 0.679
f16 230 57 0.99 0.965 0.987 0.692
b2 230 2 0.895 1 0.995 0.851
other 230 86 0.988 0.945 0.986 0.527
b52 230 70 0.996 0.986 0.99 0.868
kc10 230 62 0.995 0.984 0.989 0.873
command 230 40 0.993 1 0.995 0.864
f15 230 123 0.976 0.992 0.995 0.701
kc135 230 91 0.997 0.989 0.992 0.699
a10 230 27 1 0.646 0.969 0.503
b1 230 20 0.986 1 0.995 0.762
aew 230 25 0.949 1 0.995 0.782
f22 230 17 0.92 1 0.989 0.789
p3 230 105 0.998 1 0.995 0.794
p8 230 1 0.818 1 0.995 0.697
f35 230 32 0.986 0.938 0.987 0.582
f18 230 125 0.99 0.992 0.992 0.84
v22 230 41 0.993 1 0.995 0.731
su-27 230 31 0.987 1 0.995 0.889
il-38 230 27 0.988 1 0.995 0.927
tu-134 230 1 0.814 1 0.995 0.995
su-33 230 2 1 1 0.995 0.697
an-70 230 2 0.88 1 0.995 0.796
tu-22 230 98 0.997 1 0.995 0.88
Speed: 0.1ms preprocess, 4.8ms inference, 0.0ms loss, 0.6ms postprocess per image
改进三
测试结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary: 490 layers, 27270512 parameters, 0 gradients, 87.7 GFLOPs
val: Scanning E:\yolov8\ultralytics-main\datasets\VOC\labels\val.cache... 230 images, 0 backgrounds, 0 corrupt: 100%|██████████| 230/230 [00:00<?, ?it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:02<00:00, 6.10it/s]
all 230 1412 0.938 0.961 0.987 0.742
c17 230 131 0.976 0.992 0.994 0.822
c5 230 68 0.931 0.986 0.991 0.845
helicopter 230 43 0.965 1 0.989 0.611
c130 230 85 0.977 0.985 0.993 0.654
f16 230 57 0.909 0.965 0.969 0.651
b2 230 2 0.822 1 0.995 0.7
other 230 86 0.887 0.942 0.97 0.512
b52 230 70 0.966 0.971 0.983 0.842
kc10 230 62 0.99 0.968 0.988 0.832
command 230 40 0.985 1 0.995 0.829
f15 230 123 0.946 0.984 0.993 0.681
kc135 230 91 0.956 0.989 0.983 0.69
a10 230 27 0.998 0.741 0.941 0.449
b1 230 20 0.972 0.95 0.953 0.713
aew 230 25 0.944 1 0.984 0.772
f22 230 17 0.958 1 0.995 0.752
p3 230 105 0.999 0.99 0.995 0.809
p8 230 1 0.785 1 0.995 0.796
f35 230 32 1 0.915 0.982 0.522
f18 230 125 0.985 0.992 0.989 0.821
v22 230 41 0.994 1 0.995 0.688
su-27 230 31 0.937 1 0.995 0.856
il-38 230 27 0.983 1 0.995 0.846
tu-134 230 1 0.722 1 0.995 0.895
su-33 230 2 1 0.575 0.995 0.796
an-70 230 2 0.759 1 0.995 0.802
tu-22 230 98 0.993 1 0.995 0.842
Speed: 0.2ms preprocess, 4.7ms inference, 0.0ms loss, 1.2ms postprocess per image
成绩有提升,但是不多,运算量降了不少!
改进四
测试结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary: 742 layers, 21079664 parameters, 0 gradients, 68.0 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:01<00:00, 10.20it/s]
all 230 1412 0.945 0.971 0.987 0.746
c17 230 131 0.977 1 0.995 0.844
c5 230 68 0.954 1 0.995 0.847
helicopter 230 43 0.945 0.977 0.966 0.627
c130 230 85 0.981 1 0.995 0.655
f16 230 57 1 0.961 0.968 0.67
b2 230 2 0.837 1 0.995 0.749
other 230 86 0.878 0.922 0.962 0.481
b52 230 70 0.954 0.986 0.988 0.848
kc10 230 62 0.993 0.984 0.989 0.847
command 230 40 0.987 1 0.995 0.836
f15 230 123 0.951 1 0.995 0.659
kc135 230 91 0.992 0.989 0.989 0.702
a10 230 27 1 0.617 0.964 0.388
b1 230 20 0.962 1 0.995 0.68
aew 230 25 0.944 1 0.986 0.755
f22 230 17 0.923 1 0.995 0.751
p3 230 105 0.981 0.971 0.994 0.796
p8 230 1 0.744 1 0.995 0.796
f35 230 32 0.963 0.812 0.932 0.531
f18 230 125 0.991 0.992 0.989 0.822
v22 230 41 0.99 1 0.995 0.694
su-27 230 31 0.982 1 0.995 0.87
il-38 230 27 0.977 1 0.995 0.881
tu-134 230 1 0.851 1 0.995 0.895
su-33 230 2 0.916 1 0.995 0.796
an-70 230 2 0.837 1 0.995 0.895
tu-22 230 98 1 0.994 0.995 0.825
Speed: 0.2ms preprocess, 2.8ms inference, 0.0ms loss, 0.5ms postprocess per image
运算量进一步降低,成绩进一步提高!
文章和代码链接:
.2014.3001.5502
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。原始发表:2023-10-12,如有侵权请联系 cloudcommunity@tencent 删除网络重构测试架构连接本文标签: YoloV8改进策略FastVit与YoloV8完美融合,重参数重构YoloV8网络(全网首发)
版权声明:本文标题:YoloV8改进策略:FastVit与YoloV8完美融合,重参数重构YoloV8网络(全网首发) 内容由林淑君副主任自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.xiehuijuan.com/baike/1754671191a1705026.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论