admin管理员组文章数量:1794759
YoloV8改进策略:改进Head
摘要
本文尝试改进了新的注意力,使用空间注意力和多轴频域注意力融合改进。改进后的注意力超越了GAM、BAM和CBAM等常用的注意力。
YoloV8官方结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary (fused): 268 layers, 43631280 parameters, 0 gradients, 165.0 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 29/29 [
all 230 1412 0.922 0.957 0.986 0.737
c17 230 131 0.973 0.992 0.995 0.825
c5 230 68 0.945 1 0.995 0.836
helicopter 230 43 0.96 0.907 0.951 0.607
c130 230 85 0.984 1 0.995 0.655
f16 230 57 0.955 0.965 0.985 0.669
b2 230 2 0.704 1 0.995 0.722
other 230 86 0.903 0.942 0.963 0.534
b52 230 70 0.96 0.971 0.978 0.831
kc10 230 62 0.999 0.984 0.99 0.847
command 230 40 0.97 1 0.995 0.811
f15 230 123 0.891 1 0.992 0.701
kc135 230 91 0.971 0.989 0.986 0.712
a10 230 27 1 0.555 0.899 0.456
b1 230 20 0.972 1 0.995 0.793
aew 230 25 0.945 1 0.99 0.784
f22 230 17 0.913 1 0.995 0.725
p3 230 105 0.99 1 0.995 0.801
p8 230 1 0.637 1 0.995 0.597
f35 230 32 0.939 0.938 0.978 0.574
f18 230 125 0.985 0.992 0.987 0.817
v22 230 41 0.983 1 0.995 0.69
su-27 230 31 0.925 1 0.995 0.859
il-38 230 27 0.972 1 0.995 0.811
tu-134 230 1 0.663 1 0.995 0.895
su-33 230 2 1 0.611 0.995 0.796
an-70 230 2 0.766 1 0.995 0.73
tu-22 230 98 0.984 1 0.995 0.831
测试结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary: 1054 layers, 46514724 parameters, 0 gradients, 179.6 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:02<00:00, 5.46it/s]
all 230 1412 0.969 0.968 0.988 0.75
c17 230 131 0.983 0.992 0.995 0.822
c5 230 68 0.986 0.956 0.994 0.821
helicopter 230 43 0.977 0.99 0.985 0.617
c130 230 85 0.987 0.988 0.994 0.65
f16 230 57 1 0.918 0.991 0.674
b2 230 2 0.902 1 0.995 0.724
other 230 86 0.956 0.942 0.978 0.551
b52 230 70 0.971 0.971 0.972 0.825
kc10 230 62 1 0.982 0.989 0.828
command 230 40 0.993 1 0.995 0.834
f15 230 123 0.957 1 0.988 0.701
kc135 230 91 0.989 0.976 0.983 0.691
a10 230 27 1 0.492 0.901 0.48
b1 230 20 1 0.963 0.995 0.752
aew 230 25 0.955 1 0.995 0.782
f22 230 17 0.959 1 0.995 0.738
p3 230 105 0.991 0.999 0.995 0.82
p8 230 1 0.851 1 0.995 0.796
f35 230 32 1 0.973 0.995 0.575
f18 230 125 0.976 0.988 0.992 0.824
v22 230 41 0.994 1 0.995 0.712
su-27 230 31 0.991 1 0.995 0.858
il-38 230 27 0.99 1 0.995 0.846
tu-134 230 1 0.848 1 0.995 0.895
su-33 230 2 0.915 1 0.995 0.829
an-70 230 2 1 1 0.995 0.759
tu-22 230 98 0.998 1 0.995 0.84
总结
本文尝试在Head上做修改,涨点明显。欢迎大家在自己的数据集上做尝试!
代码语言:javascript代码运行次数:0运行复制.2014.3001.5501
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。原始发表:2024-03-05,如有侵权请联系 cloudcommunity@tencent 删除测试数据本文标签: YoloV8改进策略改进Head
版权声明:本文标题:YoloV8改进策略:改进Head 内容由林淑君副主任自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.xiehuijuan.com/baike/1754668762a1704989.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论