admin管理员组

文章数量:1794759

tf.nn.embedding

tf.nn.embedding

  • tfnnembedding_lookup
    • 数学上的原理
    • API介绍
    • 简单示例
      • 程序
      • 注解
    • partition_strategy参数的示例
      • mod案例1
      • mod案例2
      • div案例1
      • div案例2
  • 参考资料

tf.nn.embedding_lookup

embedding_lookup常用于NLP中将one-hot编码转换我对应的向量编码。

数学上的原理
数学上的原理

假设一共有 m 个物体,每个物体有自己唯一的id,那么从物体的集合到Rm有一个trivial的嵌入,就是把它映射到 Rm 中的标准基,这种嵌入叫做One-hot embedding/encoding.

应用中一般将物体嵌入到一个低维空间 Rn(n≪m) ,只需要再compose上一个从 Rm 到 Rn 的线性映射就好了。每一个 n×m 的矩阵M都定义了 Rm 到 Rn 的一个线性映射: x↦Mx 。当 x 是一个标准基向量的时候, Mx 对应矩阵 M <script type="math/tex" id="MathJax-Element-26">M</script>中的一列,这就是对应id的向量表示。这个概念用神经网络图来表示如下:

从id(索引)找到对应的One-hot encoding,然后红色的weight就直接对应了输出节点的值(注意这里没有activation function),也就是对应的embedding向量。


API介绍
API介绍

依据inputs_ids来寻找embedding_params中对应的元素.

embedding_lookup( params, # embedding_params 对应的转换向量 ids, # inputs_ids,标记着要查询的id partition_strategy='mod', #分割方式 name=None, validate_indices=True, # deprecated max_norm=None ) 参数description注解
paramsA single tensor representing the complete embedding tensor, or a list of P tensors all of same shape except for the first dimension, representing sharded embedding tensors. Alternatively, a PartitionedVariable, created by partitioning along dimension 0. Each element must be appropriately sized for the given partition_strategy.params是由一个tensor或者多个tensor组成的列表(多个tensor组成时,每个tensor除了第一个维度其他维度需相等)
idsA Tensor with type int32 or int64 containing the ids to be looked up in params.ids是一个整型的tensor,ids的每个元素代表要在params中取的每个元素的第0维的逻辑index.
partition_strategyA string specifying the partitioning strategy, relevant if len(params) > 1. Currently “div” and “mod” are supported. Default is “mod”.逻辑index是由partition_strategy指定,partition_strategy用来设定ids的切分方式,目前有两种切分方式’div’和’mod’.
返回值The results of the lookup are concatenated into a dense tensor. The returned tensor has shape shape(ids) + shape(params)[1:].返回值是一个dense tensor.返回的shape为shape(ids)+shape(params)[1:]

embedding_lookup中的partition_strategy参数比较难理解(this function is hard to understand, until you get the point!),下面会有特别的解释。


简单示例
简单示例

下面我们通过一个常见的案例来解释embedding_lookup的用法:

程序 # coding:utf8 import tensorflow as tf import numpy as np input_ids = tf.placeholder(dtype=tf.int32, shape=[None]) _input_ids = tf.placeholder(dtype=tf.int32, shape=[3, 2]) embedding_param = tf.Variable(np.identity(8, dtype=np.int32)) # 生成一个8x8的单位矩阵 input_embedding = tf.nn.embedding_lookup(embedding_param, input_ids) _input_embedding = tf.nn.embedding_lookup(embedding_param, _input_ids) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) print('embedding:') print(embedding_param.eval()) var1 = [1, 2, 6, 4, 2, 5, 7] print('\\n var1:') print(var1) print('\\nprojecting result:') print(sess.run(input_embedding, feed_dict={input_ids: var1})) var2 = [[1, 4], [6, 3], [2, 5]] print('\\n _var2:') print(var2) print('\\n _projecting result:') print(sess.run(_input_embedding, feed_dict={_input_ids: var2})) ''' 输出: embedding: [[1 0 0 0 0 0 0 0] [0 1 0 0 0 0 0 0] [0 0 1 0 0 0 0 0] [0 0 0 1 0 0 0 0] [0 0 0 0 1 0 0 0] [0 0 0 0 0 1 0 0] [0 0 0 0 0 0 1 0] [0 0 0 0 0 0 0 1]] var1: [1, 2, 6, 4, 2, 5, 7] projecting result: [[0 1 0 0 0 0 0 0] [0 0 1 0 0 0 0 0] [0 0 0 0 0 0 1 0] [0 0 0 0 1 0 0 0] [0 0 1 0 0 0 0 0] [0 0 0 0 0 1 0 0] [0 0 0 0 0 0 0 1]] _var2: [[1, 4], [6, 3], [2, 5]] _projecting result: [[[0 1 0 0 0 0 0 0] [0 0 0 0 1 0 0 0]] [[0 0 0 0 0 0 1 0] [0 0 0 1 0 0 0 0]] [[0 0 1 0 0 0 0 0] [0 0 0 0 0 1 0 0]]] ''' 注解
  • embedding_param参数是一个8*8的单位矩阵(这个这是由一个tensor构成的params,即len(params)=1,partition_strategy只在len(params)>1时才作用)。
embedding_param= # embedding_param只由一个tensor组成 故len(embedding_param) = 1 [[1 0 0 0 0 0 0 0] [0 1 0 0 0 0 0 0] [0 0 1 0 0 0 0 0] [0 0 0 1 0 0 0 0] [0 0 0 0 1 0 0 0] [0 0 0 0 0 1 0 0] [0 0 0 0 0 0 1 0] [0 0 0 0 0 0 0 1]]
  • 我们ids为var1,照着此id从embedding_param取对应的行元素.
var1 = [1, 2, 6, 4, 2, 5, 7] # 1即取第2行 --> [0 1 0 0 0 0 0 0] # 2即取第3行 --> [0 0 1 0 0 0 0 0] # etc.
  • 我们ids为var2,照着此id从embedding_param取对应的行元素
var2 = [[1, 4], [6, 3], [2, 5]] ''' [1, 4] 即取2,5行 [[0 1 0 0 0 0 0 0] [0 0 0 0 1 0 0 0]] 后面同理 '''
partition_strategy参数的示例
关于partition_strategy参数的示例
api描述注解
If len(params) > 1, each element id of ids is partitioned between the elements of params according to the partition_strategy. In all strategies, if the id space does not evenly divide the number of partitions, each of the first (max_id + 1) % len(params) partitions will be assigned one more id.如果len(params) > 1,params的元素分割方式是依据partition_strategy的。如果分段不能整分的话,则前(max_id + 1) % len(params)多分一个id.
If partition_strategy is “mod”, we assign each id to partition p = id % len(params). For instance, 13 ids are split across 5 partitions as: [[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]例如,如果partition_strategy =’mod’.如果我们的params是由5个tensor组成,他们的第一个维度相加为13,则分割策略为[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]
If partition_strategy is “div”, we assign ids to partitions in a contiguous manner. In this case, 13 ids are split across 5 partitions as: [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]例如,如果partition_strategy =’div’.如果我们的params是由5个tensor组成,他们的第一个维度相加为13,则分割策略为[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]

看api迷迷糊糊的,就看下面的四个例子,就会明白这个函数的操作方法了~


‘mod’案例1 # coding:utf8 import tensorflow as tf import numpy as np def test_embedding_lookup(): a = np.arange(12).reshape(3, 4) b = np.arange(12, 16).reshape(1, 4) c = np.arange(16, 28).reshape(3, 4) print(a) print('\\n') print(b) print('\\n') print(c) print('\\n') a = tf.Variable(a) b = tf.Variable(b) c = tf.Variable(c) t = tf.nn.embedding_lookup([a, b, c], partition_strategy='mod', ids=[0, 3, 6, 1, 2, 5, 8]) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) m = sess.run(t) print(m) test_embedding_lookup() ''' 分析: 这里我们注意到params是由[a, b, c]这三个tensor组成。即len(params)=3,且a,b,c这三个tensor的第一维度分别为3,1,3。 在把这个三个tensor组合过程中,我们按照partition_strategy='mod'策略分割。即每个tensor的元素之间相差len(params).这里分割方式为[a, b, c] == [[0,3,6], [1,4,7], [2,5,8]] 这里程序还不知道4和7是找不到对应的元素的,在获取元素时候会报错 a=[[ 0 1 2 3] = [0, 3, 6] --> [0 1 2 3] = 0 [ 4 5 6 7] --> [4 5 6 7] = 3 [ 8 9 10 11]] --> [8 9 10 11] = 6 b=[[12 13 14 15]] = [1, 4, 7] --> [12 13 14 15] = 1 --> 运行时报错 = 4 --> 运行时报错 = 7 c = etc.. 输出: [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15]] [[16 17 18 19] [20 21 22 23] [24 25 26 27]] [[ 0 1 2 3] # 0 [ 4 5 6 7] # 3 [ 8 9 10 11] # 6 [12 13 14 15] # 1 [16 17 18 19] # 2 [20 21 22 23] # 5 [24 25 26 27]] # 8 '''
‘mod’案例2 # coding:utf8 import tensorflow as tf import numpy as np def test_embedding_lookup(): a = np.arange(12).reshape(3, 4) b = np.arange(12, 16).reshape(1, 4) c = np.arange(16, 28).reshape(3, 4) print(a) print('\\n') print(b) print('\\n') print(c) print('\\n') a = tf.Variable(a) b = tf.Variable(b) c = tf.Variable(c) t = tf.nn.embedding_lookup([a, c, b], partition_strategy='mod', ids=[0, 3, 6, 1, 4, 7, 2]) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) m = sess.run(t) print(m) test_embedding_lookup() ''' 分析: 这里我们把params从[a, b, c]改为[a, c, b]这三个tensor组成。a,c,b这三个tensor的第一维度分别为3,3,1。 在把这个三个tensor组合过程中,依旧是每个tensor的元素之间相差len(params).这里分割方式为[a, c, b] == [[0,3,6], [1,4,7], [2,5,8]] 这里程序还不知道4和7是找不到对应的元素的,在获取元素时候会报错 a=[[ 0 1 2 3] = [0, 3, 6] --> [0 1 2 3] = 0 [ 4 5 6 7] --> [4 5 6 7] = 3 [ 8 9 10 11]] --> [8 9 10 11] = 6 c=[[16 17 18 19] = [1, 4, 7] --> [16 17 18 19] = 1 [20 21 22 23] --> [20 21 22 23] = 4 [24 25 26 27]] --> [24 25 26 27] = 7 b=[[12 13 14 15]] = [2, 5, 8] --> [12 13 14 15] = 2 --> 运行时报错 = 5 --> 运行时报错 = 8 输出: [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15]] [[16 17 18 19] [20 21 22 23] [24 25 26 27]] [[ 0 1 2 3] # 0 [ 4 5 6 7] # 3 [ 8 9 10 11] # 6 [16 17 18 19] # 1 [20 21 22 23] # 4 [24 25 26 27] # 7 [12 13 14 15]] # 2 '''
‘div’案例1 # coding:utf8 import tensorflow as tf import numpy as np def test_embedding_lookup(): a = np.arange(12).reshape(3, 4) b = np.arange(12, 16).reshape(1, 4) c = np.arange(16, 28).reshape(3, 4) print(a) print('\\n') print(b) print('\\n') print(c) print('\\n') a = tf.Variable(a) b = tf.Variable(b) c = tf.Variable(c) t = tf.nn.embedding_lookup([a, b, c], partition_strategy='div', ids=[0, 1, 2, 3, 5, 6]) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) m = sess.run(t) print(m) test_embedding_lookup() ''' 分析: 这里我们把params依旧是[a, b, c],三个tensor的第一维度分别为3,1,3。 在把这个三个tensor组合过程中,这我们按照partition_strategy='div'策略分割。即每个tensor的元素之间相差1.如果不够等分的话,前面(max_id+1)%len(params)多分一个元素。这里一共7个元素,分为3组,即3、2、2分配。 这里分割方式为[a, b, c] == [[0,1,2], [3,4], [5,6]] 这里程序还不知道4和7是找不到对应的元素的,在获取元素时候会报错 a=[[ 0 1 2 3] = [0, 1, 2] --> [0 1 2 3] = 0 [ 4 5 6 7] --> [4 5 6 7] = 1 [ 8 9 10 11]] --> [8 9 10 11] = 2 b=[[12 13 14 15]] = [3, 4] --> [12 13 14 15] = 3 --> 运行时报错 = 4 c=[[16 17 18 19] = [5, 6] --> [16 17 18 19] = 5 [20 21 22 23] --> [20 21 22 23] = 6 [24 25 26 27]] --> [24 25 26 27] = 这个是找不到的了 输出: [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15]] [[16 17 18 19] [20 21 22 23] [24 25 26 27]] [[ 0 1 2 3] # 0 [ 4 5 6 7] # 1 [ 8 9 10 11] # 2 [12 13 14 15] # 3 [16 17 18 19] # 5 [20 21 22 23]] # 6 '''
‘div’案例2 # coding:utf8 import tensorflow as tf import numpy as np def test_embedding_lookup(): a = np.arange(12).reshape(3, 4) b = np.arange(12, 16).reshape(1, 4) c = np.arange(16, 28).reshape(3, 4) print(a) print('\\n') print(b) print('\\n') print(c) print('\\n') a = tf.Variable(a) b = tf.Variable(b) c = tf.Variable(c) t = tf.nn.embedding_lookup([a, c, b], partition_strategy='div', ids=[0, 1, 2, 3, 4, 5]) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) m = sess.run(t) print(m) test_embedding_lookup() ''' 分析: 这里我们把params改为[a, c, b],三个tensor的第一维度分别为3,3,1。 在把这个三个tensor组合过程中,这我们按照partition_strategy='div'策略分割。这里一共7个元素,分为3组,即3、2、2分配。 这里分割方式为[a, c, b] == [[0,1,2], [3,4], [5,6]] 这里程序还不知道4和7是找不到对应的元素的,在获取元素时候会报错 a=[[ 0 1 2 3] = [0, 1, 2] --> [0 1 2 3] = 0 [ 4 5 6 7] --> [4 5 6 7] = 1 [ 8 9 10 11]] --> [8 9 10 11] = 2 c=[[16 17 18 19] = [3, 4] --> [16 17 18 19] = 3 [20 21 22 23] --> [20 21 22 23] = 4 [24 25 26 27]] --> [24 25 26 27] = 这个是找不到的了 b=[[12 13 14 15]] = [5, 6] --> [12 13 14 15] = 5 --> 运行时报错 = 6 输出: [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15]] [[16 17 18 19] [20 21 22 23] [24 25 26 27]] [[ 0 1 2 3] # 0 [ 4 5 6 7] # 1 [ 8 9 10 11] # 2 [16 17 18 19] # 3 [20 21 22 23] # 4 [16 17 18 19]] # 5 '''

参考资料

stackoverflow/questions/34870614/what-does-tf-nn-embedding-lookup-function-do/41922877#41922877?newreg=5119f86ea49b43aa8988a833294ceb3e

www.zhihu/question/52250059

本文标签: TFnnembedding