admin管理员组文章数量:1794759
java培训班学费一般多少,轻松拿下offer
前言
前两天,我收到了蚂蚁金服的offer,从朋友的内推开始面试到拿到最后offer经历了4面技术、一面交叉面和一面HR面。经过了漫长的等待和几次几乎折磨的面试之后,终于拿到了offer。
正文ZooKeeper 很流行,有个基本的疑问:
- ZooKeeper 是用来做什么的?
- 之前没有ZK,为什么会诞生 ZK?
OK,解答一下上面的疑问:(下面是凭直觉说的)
- ZooKeeper 是用于简化分布式应用开发的,对开发者屏蔽一些分布式应用开发过程中的底层细节
- ZooKeeper 对外暴露简单的 API,用于支持分布式应用开发
- ZooKeeper 在提供上述功能的同时,其还是一个 高性能、高可用、高可靠的分布式集群
上面说这么多,总结一下,ZK 能解决分布式应用开发的问题,ZK 能很好的解决问题。到这一步,疑问就更多了:
- 高性能是指什么?ZooKeeper 为了达到高性能,做了哪些工作?
- 高可用同上
- 高可靠同上
Note:本篇 wiki 就是为了解决上述第一个疑问的。(其他疑问会在其他 blog 中逐步解答)
为什么有 ZooKeeper一个应用程序,涉及多个进程协作时,业务逻辑代码中混杂有大量复杂的进程协作逻辑。
上述多进程协作逻辑,有 2 个特点:
- 处理复杂
- 处理逻辑可重用
因此,考虑将多进程协作的共性问题拎出,作为基础设施,让 RD 更加专注业务逻辑开发,即:
ZooKeeper 就是上述多进程协作基础服务的一种。
ZooKeeper 的特点ZooKeeper 有几个简单特点:
- ZooKeeper 的 API:从 文件系统 API 得到的启发,提供简单的 API
- ZooKeeper 运行在专用服务器上,跟业务逻辑分离,保证了高容错性和可扩展性
ZooKeeper 是存储设施,但特别注意
- ZK上存储的数据聚焦为:协作数据(元数据),而不是应用数据,应用数据有自己的存储方案,例如 HDFS 等
- ZK 本质上,可以看作一种特殊的 FS
特别说明:
应用数据和元数据,由于使用场景不同,对一致性和持久性的要求有差异, 因此,架构设计、数据治理过程中,应将 2 类数据独立看待、独立存储。
ZooKeeper 的使命ZK 要解决的核心问题:
ZK 目标:简化分布式应用开发中,多进程协作问题。为分布式应用,提供高效、可靠的分布式协调服务(基础服务),例如:
- 统一的命名服务
- 分布式锁
- 进程崩溃检测
- Leader 选举
- 配置管理:配置变更时,及时下发到各个 Client。
一个简单的问题:多进程的协作是什么?尼玛呀,有完没完,啥问题你都有,面对这个掉咋天的脑壳,还是回答一下。
多进程协作,整体分为 2 类:
特别说明:
跨网络多进程协作,进程通信,基本思路有 2 个:
真实系统中,跨网络通信,有几个共性问题:
ZK 精心设计用于屏蔽上述 3 个共性问题,使得这些问题在应用服务层面完全透明化。
ZooKeeper 特性 ZooKeeper 解决的本质问题分布式系统的一致性问题:
在这种情况下,如何保证数据的一致性?
Paxos 目标:解决分布式一致性问题,提高分布式系统容错性的一致性算法。
Paxos 本质:基于消传递的高度容错的一致性算法
ZooKeeper 定位ZooKeeper 是:
ZooKeeper 不直接暴露原语,而是,暴露一部分调用方法组成的 API,类似文件系统的 API,支持应用程序实现自己的原语。
ZooKeeper 特性ZooKeeper 可以保证如下分布式一致性特性:
- 顺序一致性:同一个 Client 发起的事务请求,严格按照发起顺序执行
- 原子性:事务请求,要么应用到所有节点,要么一个节点都没有应用
- 单一视图:Client 无论连接到哪个节点,看到的服务端数据都是一致的(Note:不准确,其实是最终一致性)
- 可靠性:事务一旦执行成功,状态永久保留
- 实时性:事务一旦执行成功,Client 并不能立即看到最新数据,但 ZooKeeper 保证最终一致性
ZooKeeper 致力于提供高性能、高可用、顺序一致性的分布式协调服务,保证数据最终一致性。
目标一:高性能(简单的数据模型)ZK 出现之前,分布式系统常用两种方式,实现多进程协作:
ZK 更专注于进程协作,而不提供任何锁接口和通用的存储数据接口。(疑问:ZK 也可以提供啊,我们不使用就行了)
应用服务器,常见的 2 种需求:
ZK 为上述 2 种策略提供了基础 API。
ZooKeeper 不适用的场景:
该笔记共八个节点(由浅入深),分为三大模块。
高性能。 秒杀涉及大量的并发读和并发写,因此支持高并发访问这点非常关键。该笔记将从设计数据的动静分离方案、热点的发现与隔离、请求的削峰与分层过滤、服务端的极致优化这4个方面重点介绍。
一致性。 秒杀中商品减库存的实现方式同样关键。可想而知,有限数量的商品在同一时刻被很多倍的请求同时来减库存,减库存又分为“拍下减库存”“付款减库存”以及预扣等几种,在大并发更新的过程中都要保证数据的准确性,其难度可想而知。因此,将用一个节点来专门讲解如何设计秒杀减库存方案。
高可用。 虽然介绍了很多极致的优化思路,但现实中总难免出现一些我们考虑不到的情况,所以要保证系统的高可用和正确性,还要设计一个PlanB来兜底,以便在最坏情况发生时仍然能够从容应对。笔记的最后,将带你思考可以从哪些环节来设计兜底方案。
篇幅有限,无法一个模块一个模块详细的展示(这些要点都收集在了这份《高并发秒杀顶级教程》里),觉得有需要的码友们,麻烦各位转发一下(可以帮助更多的人看到哟!)点这里,即可获得免费下载的方式!!
由于内容太多,这里只截取部分的内容。需要这份《高并发秒杀顶级教程》的小伙伴,麻烦各位帮忙点赞分享支持一下(可以帮助更多的人看到哟!) 载的方式!!](docs.qq/doc/DSmxTbFJ1cmN1R2dB)
[外链图片转存中…(img-OR27bmz3-1621933570328)]
[外链图片转存中…(img-mB1plWTv-1621933570330)]
由于内容太多,这里只截取部分的内容。需要这份《高并发秒杀顶级教程》的小伙伴,麻烦各位帮忙点赞分享支持一下(可以帮助更多的人看到哟!)
版权声明:本文标题:java培训班学费一般多少,轻松拿下offer 内容由林淑君副主任自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.xiehuijuan.com/baike/1687014378a128807.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论