admin管理员组文章数量:1794759
深度学习100例
文章目录
- 一、前期工作
- 1. 设置GPU
- 2. 导入数据
- 3. 查看数据
- 二、数据预处理
- 1. 加载数据
- 2. 可视化数据
- 3. 再次检查数据
- 4. 配置数据集
- 5. 归一化
- 三、构建VGG-19网络
- 1. 官方模型(已打包好)
- 2. 自建模型
- 3. 网络结构图
- 四、编译
- 五、训练模型
- 六、模型评估
- 七、保存and加载模型
- 八、预测
- 九、同系列作品
本文将实现灵笼中人物角色的识别。较上一篇文章,这次我采用了VGG-19结构,并增加了预测与保存and加载模型两个部分。
我的环境:
- 语言环境:Python3.6.5
- 编译器:jupyter notebook
- 深度学习环境:TensorFlow2.4.1
- 数据和代码:📌【传送门】
🚀 推荐阅读:深度学习100例-卷积神经网络(CNN)3D医疗影像识别 | 第23天
🚀 来自专栏:《深度学习100例》
如果你是一名深度学习小白可以先看看我这个专门为你写的专栏:《小白入门深度学习》
转载请提前私信我,或者通过左侧的联系方式联系我(电脑端可看)
1. 设置GPU如果使用的是CPU可以忽略这步
import tensorflow as tf gpus = tf.config.list_physical_devices("GPU") if gpus: tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用 tf.config.set_visible_devices([gpus[0]],"GPU") 2. 导入数据 import matplotlib.pyplot as plt # 支持中文 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 import os,PIL # 设置随机种子尽可能使结果可以重现 import numpy as np np.random.seed(1) # 设置随机种子尽可能使结果可以重现 import tensorflow as tf tf.random.set_seed(1) from tensorflow import keras from tensorflow.keras import layers,models import pathlib data_dir = "D:/jupyter notebook/DL-100-days/datasets/linglong_photos" data_dir = pathlib.Path(data_dir) 3. 查看数据数据集中一共有白月魁、查尔斯、红蔻、马克、摩根、冉冰等6个人物角色。
baiyuekui | 白月魁 | 40 张 |
chaersi | 查尔斯 | 76 张 |
hongkou | 红蔻 | 36 张 |
make | 马克 | 38张 |
mogen | 摩根 | 30 张 |
ranbing | 冉冰 | 60张 |
使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中
batch_size = 16 img_height = 224 img_width = 224 """ 关于image_dataset_from_directory()的详细介绍可以参考文章:mtyjkh.blog.csdn/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.1, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size) Found 280 files belonging to 6 classes. Using 252 files for training. """ 关于image_dataset_from_directory()的详细介绍可以参考文章:mtyjkh.blog.csdn/article/details/117018789 """ val_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.1, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) Found 280 files belonging to 6 classes. Using 28 files for validation.我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
class_names = train_ds.class_names print(class_names) ['baiyuekui', 'chaersi', 'hongkou', 'make', 'mogen', 'ranbing'] 2. 可视化数据 plt.figure(figsize=(10, 5)) # 图形的宽为10高为5 for images, labels in train_ds.take(1): for i in range(8): ax = plt.subplot(2, 4, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") plt.imshow(images[1].numpy().astype("uint8")) 3. 再次检查数据 for image_batch, labels_batch in train_ds: print(image_batch.shape) print(labels_batch.shape) break (16, 224, 224, 3) (16,)- Image_batch是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。
- Label_batch是形状(32,)的张量,这些标签对应32张图片
- shuffle() : 打乱数据,关于此函数的详细介绍可以参考:zhuanlan.zhihu/p/42417456
- prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
- cache() :将数据集缓存到内存当中,加速运行
在官方模型与自建模型之间进行二选一就可以啦,选着一个注释掉另外一个,都是正版的VGG-19哈。
VGG优缺点分析:
- VGG优点
VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。
- VGG缺点
1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。
1. 官方模型(已打包好)官网模型调用这块我放到后面几篇文章中,下面主要讲一下VGG-19
# model = keras.applications.VGG19(weights='imagenet') # model.summary() 2. 自建模型 from tensorflow.keras import layers, models, Input from tensorflow.keras.models import Model from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout def VGG19(nb_classes, input_shape): input_tensor = Input(shape=input_shape) # 1st block x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor) x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x) x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x) # 2nd block x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x) x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x) x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x) # 3rd block x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x) x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x) x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x) x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv4')(x) x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x) # 4th block x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv4')(x) x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x) # 5th block x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv4')(x) x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x) # full connection x = Flatten()(x) x = Dense(4096, activation='relu', name='fc1')(x) x = Dense(4096, activation='relu', name='fc2')(x) output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x) model = Model(input_tensor, output_tensor) return model model=VGG19(1000, (img_width, img_height, 3)) model.summary() Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 224, 224, 3)] 0 _________________________________________________________________ block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 _________________________________________________________________ block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 _________________________________________________________________ block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 _________________________________________________________________ block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 _________________________________________________________________ block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 _________________________________________________________________ block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 _________________________________________________________________ block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 _________________________________________________________________ block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 _________________________________________________________________ block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 _________________________________________________________________ block3_conv4 (Conv2D) (None, 56, 56, 256) 590080 _________________________________________________________________ block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 _________________________________________________________________ block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 _________________________________________________________________ block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 _________________________________________________________________ block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 _________________________________________________________________ block4_conv4 (Conv2D) (None, 28, 28, 512) 2359808 _________________________________________________________________ block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 _________________________________________________________________ block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 _________________________________________________________________ block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 _________________________________________________________________ block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 _________________________________________________________________ block5_conv4 (Conv2D) (None, 14, 14, 512) 2359808 _________________________________________________________________ block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 _________________________________________________________________ flatten (Flatten) (None, 25088) 0 _________________________________________________________________ fc1 (Dense) (None, 4096) 102764544 _________________________________________________________________ fc2 (Dense) (None, 4096) 16781312 _________________________________________________________________ predictions (Dense) (None, 1000) 4097000 ================================================================= Total params: 143,667,240 Trainable params: 143,667,240 Non-trainable params: 0 _________________________________________________________________ 3. 网络结构图关于卷积计算的相关知识可以参考文章:mtyjkh.blog.csdn/article/details/114278995
结构说明:
- 16个卷积层(Convolutional Layer),分别用blockX_convX表示
- 3个全连接层(Fully connected Layer),分别用fcX与predictions表示
- 5个池化层(Pool layer),分别用blockX_pool表示
VGG-19包含了19个隐藏层(16个卷积层和3个全连接层),故称为VGG-19
四、编译在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
- 损失函数(loss):用于衡量模型在训练期间的准确率。
- 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
- 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
为体现原汁原味的VGG-19,本文并未对模型参数进行修改,可依据实际情况修改模型中的相关性参数,适应实际情况以便提升分类效果。
较上一篇文章【学习100例-卷积神经网络(VGG-16)识别海贼王草帽一伙 | 第6天】我做了如下三个改变:
- 将模型从VGG-16改为VGG-19,
- 将学习率(learning_rate)从1e-4改为了1e-5
- 更换了数据集
是不是仿佛明白了什么呢
不明白也没关系,后面再逐一讲解,这里先给大家一个体验
七、保存and加载模型这是最简单的模型保存与加载方法哈
# 保存模型 model.save('model/my_model.h5') # 加载模型 new_model = keras.models.load_model('model/my_model.h5') 八、预测 # 采用加载的模型(new_model)来看预测结果 plt.figure(figsize=(10, 5)) # 图形的宽为10高为5 for images, labels in val_ds.take(1): for i in range(8): ax = plt.subplot(2, 4, i + 1) # 显示图片 plt.imshow(images[i]) # 需要给图片增加一个维度 img_array = tf.expand_dims(images[i], 0) # 使用模型预测图片中的人物 predictions = new_model.predict(img_array) plt.title(class_names[np.argmax(predictions)]) plt.axis("off")VGG-19这篇文章其实埋下了很多坑,我都非常巧妙的将它隐藏起来了不知道大家有没有发现。大家可以将自己发现的问题在下方留言处进行讨论。对于一个完美主义者,这些不完美看着真的好难受。后面看看能不能专门出几篇文章来讲这些内容。
九、同系列作品
🚀 深度学习新人必看:《小白入门深度学习》
🚀 往期精彩-卷积神经网络篇:
🚀 往期精彩-循环神经网络篇:
🚀 往期精彩-生成对抗网络篇:
🚀 本文选自专栏:《深度学习100例》
💖先赞后看,再收藏,养成好习惯!💖
本文标签: 深度
版权声明:本文标题:深度学习100例 内容由林淑君副主任自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.xiehuijuan.com/baike/1686523644a77474.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论